Biology Reference
In-Depth Information
species of Arachis (Leguminosae). Bonplandia 14:65-
72.
Pimratch, S., S. Jogloy, B. Toomsan, P. Jaisil, J. Sikhi-
narum, T. Kesmala, and A. Patanothai. 2004. Evaluation
of seven peanut genotypes for nitrogen fixation and agro-
nomic traits. J. Sci. Tech. 26(3):295-304.
Porter, D. M., D. H. Smith, and R. Rodrıguez-Kabana. 1984.
Compendium of peanut disease. St. Paul: APS Press.
Potenza, C., Stephen H. Thomas, and Champa Sengupta-
Gopalana. 2001. Genes induced during early response
to
from the high oleate variety of peanut ( Arachis hypogaea
L.) is the absence of delta 12-desaturase activity. Plant
Sci. 91(1):15-21.
Robledo, G., and G. Seijo. 2010. Species relation-
ships among the wild B genome of Arachis species
(section Arachis ) based on FISH mapping of rDNA
loci and heterochromatin detection: a new proposal for
genome arrangement. Theor. Appl. Genet. 121(6):1033-
1046.
Santos, S. P., K. Dantas, S. C. M. Leal-Bertioli, S. Nielen,
M. C. Moretzsohn, P. M. Guimaraes, G. Micas, and D.
J. Bertioli. 2011. New synthetic tetraploids for the intro-
gression of wild alleles into cultivated peanut Advances
in Arachis through Genomics and Biotechnology 5 (13-
15 June):P33, Brasılia, Brazil.
Sarvamangala, C., M. V. C. Gowda, and R. K. Varshney.
2011. Identification of quantitative trait loci for protein
content, oil content and oil quality for groundnut ( Arachis
hypogaea L.). Field Crops Res. 122(1):49-59.
Sato, S., Y. Nakamura, T. Kaneko, E. Asamizu, T.
Kato, M. Nakao, S. Sasamoto, A. Watanabe, A.
Ono, K. Kawashima, T. Fujishiro, M. Katoh, M.
Kohara, Y. Kishida, C. Minami, S. Nakayama, N.
Nakazaki, Y. Shimizu, S. Shinpo, C. Takahashi, T.
Wada, M. Yamada, N. Ohmido, M. Hayashi, K. Fukui,
T. Baba, T. Nakamichi, H. Mori, and S. Tabata. 2008.
Genome structure of the legume, lotus japonicus. DNA
Res. 15(4):227-239.
Seijo, J. G., G. I. Lavia, A. Fernandez, A. Krapovickas, D.
Ducasse, and E. A. Moscone. 2004. Physical mapping of
the 5S and 18S-25S rRNA genes by FISH as evidence that
Arachis duranensis and A. ipaensis are the wild diploid
progenitors of A. hypogaea ( Leguminosae ). Am.J.Bot.
91(9):1294-1303.
Sharief, Y., J. O. Rawlings, and W. C. Gregory. 1978. Esti-
mates of leafspot resistance in three interspecific hybrids
of Arachis . Euphytica 27(3):741-751.
Shirasawa, K., H. Kirakawa, M. Hasegawa, H. Kiyoshima,
S. Kuroda, C. Kuwata, S. Suzuki, Y. Naito, T.
Kuboyama, S. Tabata, and S. Isobe. 2011. Genetic
mapping of cultivated peanut with genomic SSR and
transposons markers screened by in silico polymor-
phic analysis. Advances in Arachis through Genomics
and
Meloidogyne
incognita
in
roots
of
resistant
and
susceptible
alfalfa
cultivars.
Plant
Sci.
161(2):289-
299.
Proite, K., S. Leal-Bertioli, D. Bertioli, M. Moretzsohn, F.
da Silva, N. Martins, and P. Guimaraes. 2007. ESTs from
a wild Arachis species for gene discovery and marker
development. BMC Plant Biol. 7:7.
Proite K., R. Carneiro, R. Falcao, A. Gomes, S. Leal-
Bertioli, P. Guimaraes, and D. Bertioli. 2008. Post-
infection development and histopathology of Meloidog-
yne arenaria race 1 on Arachis spp. Plant Pathol.
57(5):974-980.
Qin, H., S. Feng, C. Chen, Y. Guo, S. Knapp, A. Culbreath,
G. He, M. Wang, X. Zhang, C. Holbrook, P. Ozias-
Akins, and B. Guo. 2012. An integrated genetic linkage
map of cultivated peanut ( Arachis hypogaea L.) con-
structed from two RIL populations. Theor. Appl. Genet.
124(4):653-664.
Raina, S. N., and Y. Mukai. 1999. Genomic in situ hybridiza-
tion in Arachis (Fabaceae) identifies the diploid wild
progenitors of cultivated ( A. hypogaea ) and related wild
( A. monticola ) peanut species. Plant Syst. Evol. 214(1-
4):251-262.
Ramos, M. L., G. Fleming, Y. Chu, Y. Akiyama, M. Gallo,
and P. Ozias-Akins. 2006. Chromosomal and phyloge-
netic context for conglutin genes in Arachis based on
genomic sequence. Mol. Genet. Genomics 275(6):578-
592.
Rao, N. K., L. J. Reddy, and P. J. Bramel. 2003. Poten-
tial of wild species for genetic enhancement of some
semi-arid food crops. Genet. Resour. Crop Ev. 50(7):707-
721.
Ratnaparkhe, M. B., X. Wang, Jingping Li, R. O. Comp-
ton, L. K. Rainville, C. Lemke, C. Kim, H. Tang, and
A. H. Paterson. 2011. Comparative analysis of peanut
NBS-LRR gene clusters suggests evolutionary innova-
tion among duplicated domains and erosion of gene
microsynteny. New Phytologist 192(1):164-178.
Ravi, K., V. Vadez, S. Isobe, R. R. Mir, Y. Guo, S. N.
Nigam, M. V. C. Gowda, T. Radharishnan, D. J. Bertioli,
S. J. Knapp, and R. K. Varshney. 2011. Identification
of several small main-effect QTLs and a large number
of epistatic QTLs for drought tolerance related traits in
groundnut (Arachis hypogaea L.). Theor. Appl. Genet.
122(6):1119-1132.
Ray, T. K., S. P. Holly, D. A. Knauft, A. G. Abbott, and G.
L. Powell. 1993. The primary defect in developing seed
Biotechnology
5
(13-15
June):A10,
Brasılia,
Brazil.
Shirasawa, K., P. Koilkonda, K. Aoki, H. Hirakawa, S.
Tabata, M. Watanabe, M. Hasegawa, H. Kiyoshima, S.
Suzuki, C. Kuwata, Y. Naito, T. Kuboyama, A. Nakaya,
S. Sasamoto, A. Watanabe, M. Kato, K. Kawashima,
Y. Kishida, M. Kohara, A. Kurabayashi, C. Takahashi,
H. Tsuruoka, T. Wada, and S. Isobe. 2012. In silico
polymorphism analysis for the development of simple
sequence repeat and transposon markers and construction
of linkage map in cultivated peanut. BMC Plant Biol.
12:80.
Shokes, F. M. and A. K. Culbreath. 1997. “Early and late
leaf spots.” In: Compendium of peanut diseases, 2nd
Search WWH ::




Custom Search