Biomedical Engineering Reference
In-Depth Information
[111] J.W. Goodman, Introduction to Fourier Optics, second ed., McGraw-Hill Company, Inc., New York,
NY, 1996.
[112] T. Colomb, N. Pavillon, J. K¨hn, E. Cuche, C. Depeursinge, Y. Emery, Extended depth-of-focus by
digital holographic microscopy, Opt. Lett. 35(11) (2010) 1840 1842.
[113] P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, et al., Compensation of the
inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast
imaging, Appl. Opt. 42(11) (2003) 1938 1946.
[114] T. Colomb, E. Cuche, F. Charri`re, J. K¨hn, N. Aspert, F. Montfort, et al., Automatic procedure for
aberration compensation in digital holographic microscopy and applications to specimen shape
compensation, Appl. Opt. 45(5) (2006) 851 863.
[115] P. Ferraro, D. Alferi, S.D. Nicola, L.D. Petrocellis, A. Finizio, G. Pierattini, Quantitative phase-contrast
microscopy by a lateral shear approach to digital holographic image reconstruction, Opt. Lett. 31(10)
(2006) 1405 1407.
[116] N. Lue, G. Popescu, T. Ikeda, R.R. Dasari, K. Badizadegan, M.S. Feld, Live cell refractometry using
microfluidic devices, Opt. Lett. 31(18) (2006) 2759 2761.
[117] J. Kuhn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, et al., Real-time dual-wavelength
digital holographic microscopy with a single hologram acquisition, Opt. Express 15(12) (2007)
7231 7242.
[118] L. Miccio, A. Finizio, P. Memmolo, M. Paturzo, F. Merola, G. Coppola, et al., Detection and
visualization improvement of spermatozoa cells by digital holography, in Molecular Imaging III, C.
Lin and V. Ntziachristos, eds., Vol. 8089 of Proceedings of SPIE-OSA Biomedical Optics (Optical
Society of America, 2011), paper 80890C. http://www.opticsinfobase.org/abstract.cfm?URI=ECBO-
2011-80890C.
[119] I. Crga, J. Zakova, M. Huser, P. Ventruba, E. Lousova, M. Pohanka, Digital holographic microscopy in
human sperm imaging, J. Assist. Reprod. Genet. (2011).
[120] W.M. Ash III, L. Krzewina, M.K. Kim, Quantitative imaging of cellular adhesion by total internal
reflection holographic microscopy, Appl. Opt. 48(34) (2009) H144 H152.
[121] C. Pache, J. K ¨ hn, K. Westphal, M.F. Toy, J. Parent, O. B ¨ chi, et al., Digital holographic microscopy
real-time monitoring of cytoarchitectural alterations during simulated microgravity, J. Biomed. Opt.
15(2) (2010) 026021 (9 pages).
[122] P. Langehanenberg, G. Bally, B. Kemper, Autofocusing in digital holographic microscopy, 3D Res. 2(1)
(2011) pp. D176
D182.
[123] M. Liebling, M. Unser, Autofocus for digital fresnel holograms by use of a fresnelet sparsity criterion,
J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 21(12) (2004) 2424 2430.
[124] M. Antkowiak, N. Callens, C. Yourassowsky, F. Dubois, Extended focused imaging of a microparticle
field with digital holographic microscopy, Opt. Lett. 33(14) (2008) 1626 1628.
[125] P. Ferraro, S. Grilli, D. Alfieri, S.D. Nicola, A. Finizio, G. Pierattini, et al., Extended focused image in
microscopy by digital holography, Opt. Express 13(18) (2005) 6738 6749.
[126] I. Moon, M. Daneshpanah, A. Anand, B. Javidi, Cell identification with computational: 3-D holographic
microscopy, Opt. Photonics News 22(6) (2011) 18 23.
[127] M. DaneshPanah, B. Javidi, Tracking biological microorganisms in sequence of 3D holographic
microscopy images, Opt. Express 15(7) (2007) 10761 10766.
[128] J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, A.R. Place, Digital holographic microscopy reveals
prey-induced changes in swimming behavior of predatory dinoflagellates, Proc. Natl. Acad. Sci. U.S.A.
104(44) (2007) 17512 17517.
[129] J. Sheng, E. Malkiel, J. Katz, J.E. Adolf, A.R. Place, A dinoflagellate exploits toxins to immobilize prey
prior to ingestion, Proc. Natl. Acad. Sci. U.S.A. 107(5) (2010) 2082 2087.
[130] R. Barer, Determination of dry mass, thickness, solid and water concentration in living cells, Nature
(London) 172(4389) (1953) 1097 1098.
Search WWH ::




Custom Search