Biomedical Engineering Reference
In-Depth Information
15.7.16 Slow Axis
The slow axis describes an orientation in a birefringent material. For a given propagation
direction, light polarized parallel to the slow axis experiences the highest refractive index
and hence travels the slowest in the material. Also see Section 15.7.7 .
15.7.17 Waveplate
See Section 15.7.15 .
Acknowledgments
I gratefully acknowledge many years of illuminating discussions on polarized light microscopy with Shinya
Inou ´ and Michael Shribak of the MBL.
This work was supported by funds from the National Institute of Biomedical Imaging and Bioengineering
(grant EB002045).
References
[1] S. Inou´, H. Sato, Deoxyribonucleic acid arrangement in living sperm, in: T. Hayashi, A.G. Szent-
Gyorgyi (Eds.), Molecular Architecture in Cell Physiology, Prentice Hall, Englewood Cliffs, NJ, 1966,
pp. 209 248.
[2] E.D. Salmon, S.M. Wolniak, Role of microtubules in stimulating cytokinesis in animal cells, Ann. N. Y.
Acad. Sci. 582 (1990) 88 98.
[3] H. Sato, G.W. Ellis, S. Inoue, Microtubular origin of mitotic spindle form birefringence. Demonstration of
the applicability of Wiener's equation, J. Cell Biol. 67(3) (1975) 501 517.
[4] D.E. Chandler, J. Heuser, The vitelline layer of the sea urchin egg and its modification during
fertilization. A freeze-fracture study using quick-freezing and deep-etching, J. Cell. Biol. 84(3) (1980)
618 632.
[5] N.H. Hartshorne, A. Stuart, Crystals and the Polarising Microscope: A Handbook for Chemists and
Others, third ed., Arnold, London, 1960.
[6] N.H. Hartshorne, A. Stuart, Practical Optical Crystallography, American Elsevier Publishing Co., Inc.,
New York, NY, 1964.
[7] W.J. Schmidt, Die Bausteine des Tierk ¨ rpers in polarisiertem Lichte, Cohen, Bonn, 1924.
[8] W.J. Schmidt, Die Doppelbrechung von Karyoplasma, Zytoplasma und Metaplasma. Protoplasma
Monographien, vol. 11, Borntr ¨ ger, Berlin, 1937.
[9] S. Inou ´ , W.L. Hyde, Studies on depolarization of light at microscope lens surfaces II. The simultaneous
realization of high resolution and high sensitivity with the polarizing microscope, J. Biophys. Biochem.
Cytol. 3(6) (1957) 831 838.
[10] S. Inoue, H. Sato, Cell motility by labile association of molecules. The nature of mitotic spindle fibers
and their role in chromosome movement, J. Gen. Physiol. 50(Suppl. 6) (1967) 259
292.
[11] S. Inoue, J. Fuseler, E.D. Salmon, G.W. Ellis, Functional organization of mitotic microtubules. Physical
chemistry of the in vivo equilibrium system, Biophys. J. 15(7) (1975) 725 744.
[12] S. Inou´, Video Microscopy, Plenum Press, New York, NY, 1986.
[13] S. Inoue, R. Oldenbourg, Microtubule dynamics in mitotic spindle displayed by polarized light
microscopy, Mol. Biol. Cell. 9(7) (1998) 1603 1607.
[14] S. Inoue, Polarization microscopy, Curr. Protoc. Cell Biol. (2002) (Chapter 4: Unit 4.9).
Search WWH ::




Custom Search