Biomedical Engineering Reference
In-Depth Information
Before reaching the detector plan, this cross-spectral density function will also propagate
for another distance of z s . Therefore, the cross-spectral density at the detector plane can be
written as:
W D ð
x D1 ;
y D1 ;
x D2 ;
y D2 ;νÞ
ðððð WðΔx;Δy;η;νÞt
ðx 0 1 ;y 0 1 Þtðx 0 2 ;y 0 2 Þh C ðx 0 1 ;x D1 ;y 0 1 ;y D1 ;νÞh C ðx 0 2 ;x D2 ;y 0 2 ;y D2 ;νÞ
d x 0 1 d y 0 1 d x 0 2 d y 0 2
5
where ( x D1 , y D1 ) and ( x D2 , y D2 ) refer to two arbitrary points on the detector plane
(within the hologram region of each cell) and h C ðx 0 ; x D ; y 0 ; y D ; νÞ 5
exp
1
z s exp j 2 πz s
j
λ
λ
2
2
j λz s
x 0 2 x D Þ
y 0 2 y D Þ
ð
1 ð
:
At the sensor plane ( x D , y D ), one can then write the optical intensity I ( x D , y D ) as:
ð W D ð
I
ð
x D ;
y D Þ 5
x D ;
y D ;
x D ;
y D ; νÞ
d
ν
Assuming t ( x , y ) 5 1 1 c 1 δ ( x 2 a , y ) 1 c 2 δ ( x 1 a , y ), the optical intensity I ( x D , y D ) can be
further expanded into four terms, each with a different physical meaning, i.e.:
Iðx D ; y D Þ 5 I s ðx D ; y D Þ 1 I C ðx D ; y D Þ 1 H 1 ðx D ; y D Þ 1 H 2 ðx D ; y D Þ
where:
2 S 0
2 S 0
y D Þ 5 D 0 1 j
c 1
j
Þ 1 j
c 2
j
P
P
I s ð
x D ;
ð
0
;
0
ð
0
;
0
Þ
(8.1)
2
2
ðλ
0 z a z s
Þ
ðλ
0 z a z s
Þ
exp j 4
c 2 c 1 S 0
ðλ 0 z a z s Þ
2 a
λ 0 z a ;
πax D
λ 0 z s
P
I C
ð
x D
;
y D
Þ 5
0
1 c
:
c
:
(8.2)
2
1 c
S 0
ðλ 0 z a Þ
2 x D UM 1 aUMUF; 2 y D UMÞ h C ðx D ; y D Þ
H 1 ðx D ; y D Þ 5
2 c 1 U
:
c
:
(8.3)
1 c
S 0
Þ h C ð
H 2 ð
x D ;
y D Þ 5
c 2 U
p
ð 2 x D U
M 2 a
U
M
U
F
; 2 y D U
M
x D ;
y D Þ
:
c
:
(8.4)
2
ðλ
0 z a
Þ
where “c.c.” and “ ” denote the complex conjugate and convolution operations,
respectively, M 5 ( z a /z s ), F 5 ( z a 1 z s / z a ), and P is the 2D spatial Fourier transform of the
arbitrary aperture function p ( x , y ). It should be emphasized that ( x D , y D ) in these equations
is restricted to the extent of the cell/object hologram, rather than extended to the entire FOV
of the detector array. Furthermore, h C ð
x D 2
1 y D 2
x D ;
y D Þ 5 ð
1
=
j
λ 0 U
F
U
z s Þ
exp
ð
j
ðπ=λ 0 U
F
U
z s Þð
ÞÞ
and it represents the 2D coherent impulse response of free space over a distance of
Δ
z s . For the incoherent illumination source, we have assumed that the spectral
bandwidth is much smaller than its center frequency V 0 ,i.e., S ( v ) D S 0
z 5 F
( v 2 v 0 ). This is an
appropriate assumption since the light sources (LEDs) that we have typically used in our
δ
Search WWH ::




Custom Search