Environmental Engineering Reference
In-Depth Information
105. M. Sundaramoorthy, K. Kishi, M. H. Gold, T. L. Poulos. The crystal struc-
ture of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A
resolution. J. Biol. Chem ., Vol. 269, pp. 32759-32767, 1994.
106. M. Sundaramoorthy, M. H. Gold, T. L. Poulos. Ultrahigh (0.93 A) resolu-
tion structure of manganese peroxidase from Phanerochaete chrysospo-
rium: Implications for the catalytic mechanism. J. Inorg. Biochem ., Vol. 104,
pp. 683-690, 2010.
107. T. K. Kirk, M. Tien, P. J. Kersten, M. D. Mozuch, B. Kalyanaraman. Ligninase
of Phanerochaete chrysosporium mechanism of its degradation of the non-
phenolic arylglycerol b-aryl ether substrate of lignin. Biochem. J ., Vol. 236,
pp. 279-287, 1986.
108. T. Umezawa, T. Higuchi. Cleavages of aromatic ring and - O -4 bond of syn-
thetic lignin (DHP) by lignin peroxidase. FEBS Lett ., Vol. 242, pp. 325-329,
1989.
109. P. J. Harvey, J. M. Palmer, H. E. Schoemaker, H. L. Dekker, R. Wever. Pre-
steady-state kinetic study on the formation of compound I and II of ligni-
nase. Biochim. Biophys. Acta , Vol. 994, pp. 59-63, 1989.
110. P. J. Harvey, H. E. Schoemaker, J. M. Palmer. Veratryl alcohol as a media-
tor and the role of radical cations in lignin biodegradation by Phanerochaete
chrysosporium . FEBS Lett ., Vol. 195, pp. 242-246, 1986.
111. J. K. Glenn, L. A. Aran, M. H. Gold. Mn (II) oxidation is the principal func-
tion of the extracellular Mn-peroxidase from Phanerochaete chrysosporium .
Arch. Biochem. Biophys ., Vol. 251, pp. 688-696, 1986.
112. A. Paszczynski, V.-B. Huynh, R. Crawford. Enzymatic activities of an extra-
cellular, manganese-dependent peroxidase from Phanerochaete chrysospo-
rium . FEMS Microbiol. Lett ., Vol. 29, pp. 37-41, 1985.
113. A. Paszczynski, V.-B. Huynh, R. Crawford. Comparison of ligninase-I and
peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium .
Arch. Biochem. Biophys ., Vol. 244, pp. 750-765, 1986.
114. K. Ikehata, I. D. Buchanan, D. W. Smith. Production of enzymes for environ-
mental applications. A review. In: A. Sakurai ed. Wastewater Treatment Using
Enzymes . Kerala, India, Research Signpost, pp. 1-40, 2003.
115. S. Camarero, S. Sarkar, F. J. Ruiz-Dueñas, M. J. Martínez, A. T. Martínez.
Description of a versatile peroxidase involved in the natural degradation of
lignin that has both manganese peroxidase and lignin peroxidase substrate
interaction sites. J. Biol. Chem ., Vol. 274, pp. 10324-10330, 1999.
116. A. Heinfling, F. J. Ruiz-Dueñas, M. J. Martínez, M. Bergbauer, U. Szewzyk, A.
T. Martínez. A study on reducing substrates of manganese-oxidizing peroxi-
dases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett ., Vol. 428,
pp. 141-146, 1998.
117. Y. Sugano. DyP-type peroxidases comprise a novel heme peroxidase family.
Cell. Mol. Life Sci ., Vol. 66, pp. 1387-1403, 2009.
118. Y. Sugano, Y. Matsushima, K. Tsuchiya, H. Aoki, M. Hirai, M. Shoda.
Degradation pathway of an anthraquinone dye catalyzed by a unique
Search WWH ::




Custom Search