Biomedical Engineering Reference
In-Depth Information
REFERENCES
[1] Hench, L.L. (1998) Bioceramics. Journal of the American Ceramic Society , 81 ,
1705-1728.
[2] Hutmacher, D.W. (2000) Scaffolds in tissue engineering bone and cartilage. Bioma-
terials , 21 , 2529-2543.
[3] Rezwan, K., Chen, Q.Z., Blaker, J.J. and Boccaccini, A.R. (2006) Biodegradable and
bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.
Biomaterials , 27 , 3413-3431.
[4] Cooper, J.A., Lu, H.H., Ko, F.K. et al . (2005) Fiber-based tissue-engineered scaffold
for ligament replacement: design considerations and in vitro evaluation. Biomateri-
als , 26 , 1523-1532.
[5] Hill, R.G. (2005) Biomedical polymers. In Biomaterials, Artificial Organs and Tissue
Engineering (eds L.L. Hench and J.R. Jones). Cambridge: Woodhead, pp. 97-106.
[6] Misra, S.K., Mohn, D., Brunner, T.J. et al . (2008) Comparison of nanoscale and
microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Bioma-
terials , 29 , 1750-1761.
[7] Misra, S.K., Boccaccini, A.R. (2007) Biodegradable and bioactive polymer/ceramic
composite scaffolds, Chapter 4 in ''Tissue Engineering Using Ceramics and Poly-
mers'', Boccaccini, A.R., Gough, J.E., eds., (Woodhead Publishing, CRC, Cam-
bridge, UK) pp. 72-92.
[8] Boccaccini, A.R., Blaker, J.J. (2005) Bioactive composite materials for tissue engi-
neering scaffolds - A Review, Expert Rev. Med. Devices 2 , 303-317.
[9] Misra, S.K., Ansari, T.I., Valappil, S.P., Mohn, D., Philip, S.E., Starke, W.J., Roy,
I., Knowles, J.C., Salih, V. and Boccaccini, A.R. (2010) Poly(3-hydroxybutyrate)
multifunctional composite scaffolds for tissue engineering applications, Biomaterials
31 , 2806-2815.
[10] Maquet, V., Boccaccini, A.R., Pravata, L., Nothinger, I. and Jer ome, R. (2003)
Preparation, Characterisation and In Vitro Degradation of Bioresorbable and Bioac-
tive Composites Based on Bioglass ® -Filled Polylactide Foams'', J. Biomed. Mat. Res.
66A, 335-346.
[11] Lu H.H., El-Amin S.F., Scott K.D. and Laurencin C.T. (2003) Three-dimensional,
bioactive, biodegradable, polymer-bioactive glass composite scaffolds with
improved mechanical properties support collagen synthesis and mineralization of
human osteoblast-like cells in vitro. J. Biomed. Mater. Res. 64A ( 3 ), 465-474.
[12] Helen, W., Merry, C.L.R., Blaker, J.J. and Gough, J.E. (2007) Three-dimensional
culture of annulus fibrosis cells within PDLLA/Bioglass composite foam scaffolds:
assessment of cell attachment, proliferation and extracellular matrix production.
Biomaterials , 28 , 2010-2020.
Search WWH ::




Custom Search