Digital Signal Processing Reference
In-Depth Information
Table 12.1. Comparison between the DFT and DTFT coefficients in Example 12.9
DTFT frequency,
DFT index, r r
= 2 π r / N
DFT coefficients, X [ r ]
DTFT coefficients, X ( )
5
−π
0.6212
0.6250
4
0 . 8 π
0 . 6334 + j0.1504
0 . 6373 + j0.1513
3
0 . 6 π
0 . 6807 + j0.3277
0 . 6849 + j0.3297
2
0 . 4 π
0 . 8185 + 0 . 5734
0 . 8235 + j0 . 5769
1
0 . 2 π
1 . 3142 + j0.9007
1 . 3222 + j0 . 9062
0
0
2.4848
2.5000
1
0.2 π
1 . 3142 j0.9007
1 . 3222 j0 . 9062
2
0.4 π
0 . 8185 j0.5734
0 . 8235 j0 . 5769
3
0.6 π
0 . 6807 j0.3277
0 . 6849 j0 . 3297
4
0.8 π
0 . 6334 j0.1504
0 . 6373 j0 . 1513
Step 3: DFT computation The M ATLAB code for computing the DFT is as
follows:
>> N = 10; k = 0:N-1; % set sequence length
%toN=10
>> x = 0.6.ˆk; % compute the DT sequence
>> X = fft(x); % calculate the 10-point DFT
>> X = fftshift(X); % shift the DFT coefficients
>> w = -pi:2*pi/N:pi-2*pi/N; % compute DTFT frequencies
Table 12.1 compares the computed DFT coefficients with the corresponding
DTFT coefficients obtained from the following DTFT pair:
←−−→ 1
DTFT
0 . 6 k u [ k ]
1 0 . 6e j .
We observe that the values of the DFT coefficients are fairly close to the DTFT
values.
Example 12.10
Calculate the DTFT of the aperiodic sequence x [ k ] = [2, 1, 0, 1] for 0 k
3.
Solution
Using Eq. (12.6), the DFT coefficients are given by
X [ r ] = [4 , 2 , 0 , 2]
for
0 r 3 .
Mapping in the DTFT domain, the corresponding DTFT coefficients are given
by
X ( r ) = [4 , 2 , 0 , 2]
for
r = [0 , 0 . 5 π, π, 1 . 5 π ] radians / s .
Search WWH ::




Custom Search