Digital Signal Processing Reference
In-Depth Information
step (1)
step (2)
step (3)
h p [− m ]
5
5
h p [ m ]
x p [ m ]
3
2
1
m
m
m
0
1
23
0
1
23
0
1
23
step (4a)
step (4b)
x p [ m ] h p [1 − m ]
x p [ m ] h p [0 − m ]
h p [1 − m ]
h p [− m ]
m
m
m
m
0
1
23
0
1
23
0
1
23
0
1
23
step (4c)
step (4d)
x p [ m ] h p [2 − m ]
h p [3 − m ]
x p [ m ] h p [3 − m ]
h p [2 − m ]
m
m
m
m
0
1
23
0
1
23
0
1
23
0
1
23
steps (5)-(8)
y p [ k ]
25
25
25
15
15
15
15
15
15
5
5
5
Fig. 10.11. Periodic convolution
using circular shifting in Example
10.12.
k
−4
−3
−2 −1
0
0
2
2
56
Example 10.12
Using Algorithm 10.3, determine the periodic convolution of the periodic
sequences
5
k = 0 , 1
x p [ k ] = k (0 k 3)
and
h p [ k ] =
0
k = 2 , 3 ,
with fundamental period K 0 = 4.
Solution
Following steps (1) and (2), the applied input and the impulse response are
plotted as a function of m in Fig. 10.11, steps (1) and (2).
Following step (3), the circularly reflected impulse response v p [ m ] =
h p [ m ] = h p [ K 0 m ] for 0 m 3 is calculated as follows:
v p [0] = h p [0] = 1;
v p [1] = h p [ 1] = h p [3] = 0;
v p [2] = h p [ 2]
= h p [2] = 0;
and
v p [3] = h p [ 3] = h p [1] = 3 .
Search WWH ::




Custom Search