Digital Signal Processing Reference
In-Depth Information
Impulse response Since
H ( s ) = 1
s
m
s 2 + 2 ξ n ω n s + ω n
k
,
H ( s )
the impulse response of the dc motor equals the integral of the impulse response
h
( s ) is similar
to the transfer function of the spring damping system, Eqs. (8.20)-(8.27) are
used to derive the impulse response h ( t ) of the dc motor. Depending upon the
value of ξ n , we consider three different cases.
( t ), the inverse Laplace transform of H
( s ). Since the form of H
Case 1 ( ξ n = 1) As derived in Eq. (8.21), the inverse Laplace transform of
H
( s ) for ξ n
= 1isgivenby
m
s 2 + 2 ξ n ω n s + ω n
k
←→
m t e
−ω n t u ( t )
.
k
Taking the integral of h
( t ) yields
t
ω n
+ 1
ω n
−ω n t d t
m
−ω n t
h ( t ) =
k
m t e
=− k
e
+ C
for
t
0 .
(8.42)
Case 2 ( ξ n > 1) Equation (8.24) derives the inverse Laplace transform of H
( s )
for ξ n > 1 as follows:
k
e ω n
m
m
s 2 + 2 ξ n ω n s + ω n
k
←→
ξ n 1 t
ξ n 1 t
−ξ n ω n t
−ω n
1 e
e
u ( t )
.
2 ω n
ξ n
The impulse response of the dc motor is given by
d t
k
m
−ξ n ω n t
e ω n
ξ n
1 t
−ω n
ξ n
1 t
h ( t ) =
e
e
2 ω n
ξ n
1
−ξ n ω n t
−ω n
ξ n
1 t
e ω n
ξ n
1 t
k
m e
e
=
ξ n
ξ n
ξ n
2 ω n
1
ξ n ω n + ω n
1
ξ n ω n − ω n
1
+ C
for
t
0 .
(8.43)
Case 3 ( ξ n < 1) Equation (8.27) derives the inverse Laplace transform of H
( s )
for ξ n < 1 as follows:
k
m
m
s 2 + 2 ξ n ω n s + ω n
k
←→
−ξ n ω n t sin
e
ω n
1 − ξ n t
u ( t )
.
ω n
1 − ξ n
The impulse response of the dc motor is given by
m
k
−ξ n ω n t sin
h ( t ) =
e
ω n
1 − ξ n
t
d t
ω n
1 − ξ n
−ξ n ω n t
=− k
m e
1 − ξ n cos
ω n
1 − ξ n t
ω n
1 − ξ n
+ ξ n sin
ω n
1 − ξ n t
+ C
for
t
0 .
(8.44)
Search WWH ::




Custom Search