Digital Signal Processing Reference
In-Depth Information
which reduces to
5 s 2 + 40 s + 59
( s + 1) ( s 2 + 7 s + 12)
= 5 s 2 + 40 s + 59
( s + 1)( s + 3)( s + 4) .
Taking the partial fraction expansion, we obtain
5 s 2 + 40 s + 59
( s + 1)( s + 3)( s + 4)
W ( s ) =
k 1
( s + 1)
k 2
( s + 3)
k 3
( s + 4) ,
+
+
where the partial fraction coefficients are given by
5 s 2 + 40 s + 59
( s + 1)( s + 3)( s + 4)
= 5 40 + 59
(2)(3)
k 1
=
( s + 1)
= 4 ,
s =− 1
5 s 2 + 40 s + 59
( s + 1)( s + 3)( s + 4)
= 45 120 + 59
( 2)(1)
k 2
=
( s + 3)
= 8 ,
s =− 3
and
5 s 2 + 40 s + 59
( s + 1)( s + 3)( s + 4)
= 80 160 + 59
( 3)( 1)
k 3
=
( s + 4)
=− 7 .
s =− 4
Substituting the values of the partial fraction coefficients k 1 , k 2 , and k 3 ,we
obtain
4
( s + 1)
8
( s + 3)
7
( s + 4) .
Calculating the inverse Laplace transform of both sides, we obtain the output
signal as follows:
W ( s )
+
t
3 t
4 t ] u ( t ) .
w ( t ) [4e
+ 8e
7e
Zero-input response To calculate the zero-input output, the input signal is
assumed to be zero. Equation (6.32) reduces to
d 2 w zi
d t 2
+ 7 d w zi
d t
+ 12 w zi ( t ) = 0 ,
(6.33)
with initial conditions w (0
) = 5 and
w (0
) = 0. Calculating the Laplace
transform of Eq. 6.33 yields
[ s 2 W zi ( s ) 5 s ] + 7[ sW zi ( s ) 5] + 12 W zi ( s ) = 0
or
W zi ( s ) = 5 s + 35
s 2 + 7 s + 12 .
Using the partial fraction expansion, the above equation is expressed as follows:
5 s + 35
s 2 + 7 s + 12
20
s + 3
15
s + 4 .
Taking the inverse Laplace transform, the zero-input response is given by
W zi ( s ) =
3 t
4 t ] u ( t ) .
w zi ( t ) [20e
15e
Search WWH ::




Custom Search