Digital Signal Processing Reference
In-Depth Information
H 0,0 ( t )
1
t
0
0.5
1.0
H 1,0 ( t )
1
H 1,1 ( t )
1
t
t
0
0.5
1.0
0
0.5
1.0
H 2,0 ( t )
1
H 2,1 ( t )
1
H 2,2 ( t )
1
H 2,3 ( t )
1
t
t
t
t
0
0.5
1.0
0
0.5
1.0
0
0.5
1.0
0
0.5
1.0
Fig. P4.5. Haar functions for
m
The other Haar functions, at scale m and with translation n , are defined
using the mother Haar function as follows:
= 0, 1, and 2.
H 0 , 0 (2 m t n ) ,
= 0 , 1 ,..., (2 m 1) .
H m , n ( t ) =
n
The Haar functions for m = 0 , 1 , 2 are shown in Fig. P4.5.
Show that the Haar wavelet functions H m , n ( t ) , m = 0 , 1 , 2 ,..., n =
0 , 1 , 2 ,... (2 m 1) form a set of orthogonal functions over the interval
[0, 1] by proving the following:
1
m
2
m
=
p , n
= q
=
H m , n ( t ) H p , q ( t )d t
0
otherwise .
0
4.6 Calculate the trigonometric CTFS coefficients for the periodic functions
shown in Figs. P4.6(a)-(e).
(a) Rectangular pulse train with period 2 π :
3
for
0
t
x 1( t ) =
0
for
π
t < 2 π.
(b) Raised square wave with period 2 T :
T
2
T
2
0 . 5
for
t <
x 2( t ) =
T
2
3 T
2
1
for
t <
.
(c) Half sawtooth wave with period T :
t
T
x 3( t )
=
1
for
0
t < T .
Search WWH ::




Custom Search