Digital Signal Processing Reference
In-Depth Information
Case 2 By following the procedure outlined in case 1, it is straightforward to
show that
0
m
= n
sin( m ω 0 t ) sin( n ω 0 t )d t
=
T 0
2
(4.16)
m
= n ,
T 0
+
+
for m , n
Z
. Equation (4.16) proves that the set { sin( n ω 0 t ), n
Z
} contains
mutually orthogonal functions over interval t
= [ t 0 , t 0
+ T 0 ] with T 0
= 2 π/ω 0 .
Case 3 To verify that functions { cos( m ω 0 t ) } and { sin( n ω 0 t ) } are mutually
orthogonal, consider the following:
t 0
+ T 0
cos( m ω 0 t ) sin( n ω 0 t )d t
=
cos( m ω 0 t ) sin( n ω 0 t )d t
t 0
T 0
t 0
+ T 0
1
2
[sin(( m + n ) ω 0 t ) sin(( m n ) ω 0 t )]d tm = n
t 0
=
t 0
+ T 0
1
2
[sin(2 m ω 0 t )d t
m
= n
t 0
t 0 + T 0
t 0 + T 0
cos(( m + n ) ω 0 t )
( m + n ) ω 0
cos(( m n ) ω 0 t )
( m n ) ω 0
1
2
+ 1
2
m
= n
t 0
t 0
=
t 0
+ T 0
1
2
cos(2 n ω 0 t )
2 m ω 0
m
= n
t 0
0
m
= n
=
0
m
= n ,
(4.17)
+
for m , n
Z
, which proves that { cos( m ω 0 t ) } and { sin( n ω 0 t ) } are orthogonal
over interval t
= [ t 0 , t 0
+ T 0 ] with T 0
= 2 π/ω 0 .
Case 4 The following proof demonstrates that the function “1” is orthogonal
to cos( m ω 0 t ) } and { sin( n ω 0 t ) } :
sin( m ω 0 t )
m ω 0
t 0 + T 0
1
cos( m ω 0 t )d t
=
t 0
T 0
sin( m ω 0 t 0
+
2 m π )
sin( m ω 0 t 0 )
=
=
0
(4.18)
m ω 0
and
cos( m ω 0 t )
m ω 0
t 0
+ T 0
1
sin( m ω 0 t )d t
=
t 0
T 0
cos( m ω 0 t 0
+ 2 m π ) cos( m ω 0 t 0 )
m ω 0
=−
=
0
(4.19)
Search WWH ::




Custom Search