Digital Signal Processing Reference
In-Depth Information
0.4
0.4
0.35
0.35
0.3
0.3
0.25
0.25
0.2
0.2
0.15
0.15
0.1
0.1
0.05
0.05
t
t
0
0
−2
−1
0
1
2
3
4
5
6
7
8
9
−2
−1
0
1
2
3
4
5
6
7
8
9
(b)
(a)
Fig. 3.4. (a) Impulse response
h ( t ) of the LTIC system specified
in Example 3.5. (b) Output y ( t )
of the LTIC system for input
x ( t ) =
where constant c is determined from the zero initial condition. Substituting
h ( t ) = 0 for t
, in Eq. (3.30) gives c = 0. The impulse response of the
system in Eq. (3.28) is therefore given by h ( t ) = 2 exp( 4 t ) u ( t ).
= 0
δ( t
+ 1) + 3δ( t
− 2) +
2δ( t
− 6) .
Example 3.5
The impulse response of an LTIC system is given by h ( t ) = exp( 3 t ) u ( t ).
Determine the output of the system for the input signal x ( t ) = δ ( t + 1) +
3 δ ( t 2) + 2 δ ( t 6).
Solution
Because the system is LTIC, it satisfies the linearity and time-shifting properties.
Therefore,
δ ( t + 1) h ( t + 1) ,
3 δ ( t 2) 3 h ( t 2) ,
and
2 δ ( t 6) 2 h ( t 6) .
Applying the superposition principle, we obtain
x ( t )
y ( t ) = h ( t + 1) + 3 h ( t 2) + 2 h ( t 6) .
The impulse response h ( t ) is shown in Fig. 3.4(a) with the resulting output
shown in Fig. 3.4(b).
Search WWH ::




Custom Search