Image Processing Reference
In-Depth Information
µ (p,q,shape):= cmom 0
rows(shape)-1
1
rows(shape)
xc
(shape )
i0
i=0
rows(shape)-1
1
rows(shape)
yc
(shape )
i1
i=0
for s 0..rows(shape)-1
cmom cmom+[(shape s ) 0 -xc] p ·[(shape s ) 1 -yc] q ·(shape s ) 2
cmom
µ
(p,q,im)
η
(p,q,im):=
p+q
2
+1
µ
(0,0,im)
M1(im):= η (2,0,im)+ η (0,2,im)
M2(im):=( η (2,0,im)- η (0,2,im)) 2 +4· η (1,1,im) 2
M3(im):=( η (3,0,im)-3· η (1,2,im)) 2 +(3· η (2,1,im)- η (0,3,im)) 2
Code 7.5
Computing M1 , M2 and M3
(a) F-14 fighter
(b) F-14 fighter rotated and scaled
(c) B1 bomber
M1 = 0.2199
M2 = 0.0035
M3 = 0.0070
M1 = 0.2202
M2 = 0.0037
M3 = 0.0070
M1 = 0.2264
M2 = 0.0176
M3 = 0.0083
(d) Invariant moments for (a)
(e) Invariant moments for (b)
(f) Invariant moments for (c)
Figure 7.23
Describing a shape by invariant moments
parameterisation for centralised moments. The complex Zernike moment, Z pq , is
2
p
+ 1
Z
=
V
(, )* (, )
r
θθθ
f r
rdrd
(7.89)
pq
pq
0
0
where p is now the radial magnitude and q is the radial direction and where * denotes the
complex conjugate of a Zernike polynomial , V pq , given by
V pq ( r ,
) = R pq ( r ) e jq θ where p - q is even and 0
θ
q
p
(7.90)
where R pq is a real-valued polynomial given by
Search WWH ::




Custom Search