Environmental Engineering Reference
In-Depth Information
19. Melnicki, R.M., Eroglu, E. and Melis, A. (2009) Changes in hydrogen production and poly-
mer accumulation upon sulfur-deprivation in purple photosynthetic bacteria. International
Journal of Hydrogen Energy , 34 , 6157-6170.
20. Mohapatra, A., Leul, M., Mattsson, U. and Sellstedt, A. (2004) A hydrogen evolving enzyme
is present in Frankia R43. FEMS Microbiology Letters , 236 , 235-240.
21. Redondas, V., Gomez, X., Garcia, S. et al. (2012) Hydrogen production from food wastes
and gas post-treatment by CO2 adsorption. Waste Management , 32 , 60-66.
22. Martins, M. and Pereira, I.A.C. (2013) Sulfate-reducing bacteria as new microorganisms
for biological hydrogen production. International Journal of Hydrogen Energy , 38 ,
12294-12301.
23. DeVrije, T. and Claasen, P.A.M. (2003) Dark hydrogen fermentations, in Bio-methane &
Bio-hydrogen. Status and Perspectives of Biological Methane and Hydrogen Production
(eds J.H. Reith, R.H. Wijffels and H. Barten), Dutch Biological Hydrogen Foundation,
Smiet Offset, The Haag.
24. Argun, H. and Kargi, F. (2011) Bio-hydrogen production by different optional modes of
dark and photo-fermentation: an overview. International Journal of Hydrogen Energy , 36 ,
7443-7459.
25. Lütke-Eversloh, T. and Bahl, H. (2011) Metabolic engineering of Clostridium acetobutyli-
cum: recent advances to improve butanol production. Current Opinion in Biotechnology ,
22 , 634-647.
26. Branduardi, P., Longo, V., Berterame, N.M. et al. (2013) A novel pathway to produce etha-
nol and isobutanol in Saccharomyces cerevisiae. Biotechnology for Biofuels , 6 , 1-12.
27. Atsumi, S., Hanai, T. and Liao, J.C. (2008) Engineering the isobutanol biosynthetic pathway
in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase
genes. Applied Microbiology and Biotechnology , 85 , 651-657.
28. Huang, H.-J., Ramaswamy, S., Al-Dajani, W. et al. (2009) Effect of biomass species and
plant size on cellulosic ethanol: a comparative process and economic analysis. Biomass and
Bioenergy , 33 , 234-246.
29. Hamelinck, C.N., Hooijdonk, G.V. and Faaij, A.P.C. (2005) Ethanol from lignocellulosic
biomass: techno-economic performance in short-, middle- and long-term. Biomass and
Bioenergy , 28 , 384-410.
30. Jun, A., Tschirner, U.W. and Tauer, Z. (2012) Hemicellulose extraction from aspen
chips  prior to kraft pulping utilizing kraft white liquor. Biomass and Bioenergy , 37 ,
229-236.
31. Sedlak, M. and Ho, N.W.Y. (2004) Production of ethanol from cellulosic biomass hydro-
lysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose
and xylose. Applied Biochemistry and Biotechnology , 113-116 , 403-416.
32. Kudahettige, R.L., Holmgren, M., Imerzel, P. and Sellstedt, A. (2012) Characterization of
bioethanol production from hexoses and xylose by the white rot fungus Trametes versicolor.
Bioenergy Research , doi:10.1007/s12155-011-9119-5.
33. Holmgren, M. and Sellstedt, A. (2005) Fermentation process, starter culture and growth
medium. Patent WO 0548487.
34. Cristi, Y. (2007) Biodiesel from microalgae. Biotechnology Advances , 25 , 294-306.
35. Sharma, Y.C., Singh, B. and Korstad, J. (2011) A critical review on recent methods used for
economically viable and eco-friendly development of microalgae as a potential feedstock
for synthesis of biodiesel. Green Chemistry , 13 , 2993-3006.
Search WWH ::




Custom Search