Image Processing Reference
In-Depth Information
2. Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and
chamfer matching: two new techniques for image matching. In: 5th International Joint Con-
ference on Artificial Intelligence (1977)
3. Boisen, U., Hansen, A.J., Knudsen, L., Pedersen, S.L.: iFloor—an interactive floor in an edu-
cational environment. Technical report, Department of Media Technology, Aalborg University,
Denmark (2009)
4. Bowmaker, J.K., Dartnall, H.J.A.: Visual pigments of rods and cones in a human retina. J.
Physiol. 298 , 501-511 (1980)
5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell. 8 (6), 679-698 (1986)
6. Casado, I.H., Holte, M.B., Moeslund, T.B., Gonzalez, J.: Detection and removal of chromatic
moving shadows in surveillance scenarios. In: International Conference on Computer Vision,
Kyoto, Japan, October 2009
7. Dougherty, E.R., Lotufo, R.A.: Hands-on Morphological Image Processing. Tutorial Texts in
Optical Engineering, vol. TT59, SPIE Press, Bellingham (2003).
8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, New
York (2001).
9. Elgammal, A.: Figure-ground segmentation—pixel-based. In: Moeslund, T.B., Hilton, A.,
Kruger, V., Sigal, L. (eds.) Visual Analysis of Humans—Looking at People. Springer, Berlin
(2011). 978-0-85729-996-3
10. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, New York
11. Isard, M., Blake, A.: CONDENSATION—conditional density propagation for visual tracking.
Int. J. Comput. Vis. 29 (1), 5-28 (1998)
12. Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background
segmentation using codebook model. Real-Time Imaging 11 (3), 167-256 (2005)
13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.
60 (2), 91-110 (2004)
14. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man
Cybern. 9 (1), 62-66 (1979)
15. Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting moving shadows: algorithms and
evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 25 (7), 918-923 (2003)
16. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and
Pattern Recognition, Seattle, Washington, USA, June 1994
17. Shi, Y.Q., Sun, H.: Image and Video Compression for Multimedia for Engineering: Funda-
mentals, Algorithms, and Standards. CRC Press, Boca Raton (2000).
18. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking.
In: IEEE Conference on Computer Vision and Pattern Recognition, Ft. Collins, CO, USA,
June 1999
19. Welch, G., Bishop, G.: An introduction to the Kalman filter. Technical Report TR 95-041,
Department of Computer Science, University of North Carolina at Chapel Hill (2006)
Search WWH ::

Custom Search