Digital Signal Processing Reference
In-Depth Information
The solution to (4.36) is
1
1
ωτ 0 / 2 − e ωτ 0
e ωτ 0 / 2
h ( ω )=
e
−e
e ωτ 0 / 2 − e ωτ 0
ωτ 0 / 2 − e 3 ωτ 0 / 2
1
9
16 (1 − e ωτ 0 )
ωτ 0 − e ωτ 0
1
+
−e
.
(4.37)
ωτ 0
1 − e
Using the approximation e x 1+ x in the two factor terms of (4.37), we
obtain
1
−e ωτ 0 16
ωτ 0 / 2 + 9
ωτ 0
h ( ω ) ≈− 7
16 ω 2 τ 0
7 e
7 e
,
(4.38)
9
7 + 16
7 e ωτ 0 / 2
from which we deduce the equivalent filter 4 :
1
ωτ 0 16
7 e ωτ 0 / 2 + 9
7 e ωτ 0
( ω )= 1
ω 2
−e
′∗
h
9
7 + 16
ωτ 0 / 2
7 e
1
1
= 1
ω
16
7 e ωτ 0 / 2 + 9
7 e ωτ 0
ω
0
0
1
ωτ 0
ω
e
.
(4.39)
16
7 e ωτ 0 / 2 + 9
7 e ωτ 0
Figure 4.25 shows how this cardioid can be implemented.
It can be verified that the beampattern of the beamformer h
( ω ) is
1 − e ωτ 0 (cos θ + 1)
( ω ) ]= 1
ω 2
B [ h
×
16
7 e
ωτ 0 / 2 9
ωτ 0
e ωτ 0 cos θ
1
7 e
. (4.40)
Figure 4.26 displays the patterns from the previous equation for several fre-
quencies and two values of δ . For small values of ωτ 0 , we can approximate
4 Notice that this filter is noncausal. Therefore, we need to add a processing delay equal
to Τ 0 .
Search WWH ::




Custom Search