Digital Signal Processing Reference
In-Depth Information
10
10
0
0
10
10
20
20
30
30
40
40
50
50
60
60
70
70
80
80
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
F (kHz)
F (kHz)
( a )
( b )
10
10
0
0
10
10
20
20
30
30
40
40
50
50
60
60
70
70
80
80
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
F (kHz)
F (kHz)
(c)
(d)
FIG. 4.13 The white noise gain of the second-order supercardioid, as a function of fre-
quency, for different values of Δ : (a) Δ = 1 cm, (b) Δ = 2 cm, (c) Δ = 3 cm, and (d)
Δ = 5 cm.
(1 − α 2,1 ) 2 (1 − α 2,2 ) 2
α 2,1 + α 2,2 +4 α 2,1 α 2,2 + 3
G DN,2 [ h
( ω )] 3
.
5 + 1
2 α 2,1 + 1
2 α 2,2 +3 α 2,1 α 2,2
(4.33)
Figure 4.15 shows a three dimensional plot of G DN,2 [ h
( ω )] from (4.33). We
deduce that the theoretical values of the directivity factor for the second-
order DMAs studied in this section are as follows.
Cardioid: G DN,2 [ h
( ω )] 5 . 7.
Hypercardioid: G DN,2 [ h
( ω )] 6 . 2.
Supercardioid: G DN,2 [ h
( ω )] 5 . 9.
Quadrupole: G DN,2 [ h
( ω )] 1 . 25.
( ω )] from (4.31), for
the cardioid, hypercardioid, supercardioid, and quadrupole, respectively, as
a function of frequency, for different values of δ .
For a point noise source, we find that the gain is
In Figs. 4.16, 4.17, 4.18, and 4.19, we plot G DN,2 [ h
Search WWH ::




Custom Search