Digital Signal Processing Reference
In-Depth Information
10
10
0
0
10
10
20
20
30
30
40
40
50
50
60
60
70
70
80
80
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
F (kHz)
F (kHz)
( a )
( b )
10
10
0
0
10
10
20
20
30
30
40
40
50
50
60
60
70
70
80
80
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
F (kHz)
F (kHz)
(c)
(d)
FIG. 4.11 The white noise gain of the second-order cardioid, as a function of frequency,
for different values of Δ : (a) Δ = 1 cm, (b) Δ = 2 cm, (c) Δ = 3 cm, and (d) Δ = 5 cm.
In particular, it can be verified from (4.27) that for the quadrupole,
B 2 [ h
( ω ) ] has three identical maximums at the angles 0 , 90 , and 180 .
The white noise gain is
2
2
1 − e ωτ 0 (1 − α 2,1 )
1 − e ωτ 0 (1 − α 2,2 )
G
WN,2 [ h
( ω )] =
(4.28)
4+2cos[ ωτ 0 ( α 2,1 − α 2,2 )]
{ 1 cos[ ωτ 0 (1 − α 2,1 )] }{ 1 cos[ ωτ 0 (1 − α 2,2 )] }
1+ 2 cos[ ωτ 0 ( α 2,1
=
.
− α 2,2 )]
In Figs. 4.11, 4.12, 4.13, and 4.14, we plot G
( ω )] from (4.28), for
the cardioid, hypercardioid, supercardioid, and quadrupole, respectively, as a
function of frequency, for different values of δ . The white noise gain in (4.28)
can be approximated as
WN,2 [ h
( ω )] ( ωτ 0 ) 4 (1 − α 2,1 ) 2 (1 − α 2,2 ) 2
6
G
WN,2 [ h
.
(4.29)
We deduce that the white noise is amplified if
Search WWH ::




Custom Search