Digital Signal Processing Reference
In-Depth Information
10
10
0
0
10
10
20
20
30
30
40
40
50
50
60
60
70
70
80
80
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
F (kHz)
F (kHz)
( a )
( b )
10
10
0
0
10
10
20
20
30
30
40
40
50
50
60
60
70
70
80
80
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
F (kHz)
F (kHz)
(c)
(d)
FIG. 4.3 The white noise gain of the second-order dipole, as a function of frequency, for
different values of Δ : (a) Δ = 1 cm, (b) Δ = 2 cm, (c) Δ = 3 cm, and (d) Δ = 5 cm.
( ω )] 2 ( ωτ 0 ) 4
4
10
( ωτ 0 ) 4
G DN,2 [ h
·
5 ,
(4.16)
which should correspond to the theoretical value of the directivity factor
for the second-order dipole with diffuse noise 1 . We observe that this gain is
almost two times larger than the first-order dipole gain.
For a point noise source, the gain of the second-order dipole is
2
′H ( ω ) d ( ω, 1)
h
G NS,2 [ h
( ω )] =
|h ′H ( ω ) d ( ω, cos θ N ) | 2
| 1 − e ωτ 0 | 4
=
4
1 − e ωτ 0 cos θ N
[1 cos( ωτ 0 )] 2
[1 cos( ωτ 0 cos θ N )] 2 .
=
(4.17)
Search WWH ::




Custom Search