Digital Signal Processing Reference
In-Depth Information
given in Chapter 2, where
1 −v 1 v 1 v 2
01 ( v 1 + v 2 )
00
U 3 =
(4.3)
1
and
1
0
0
1
1
0
L 3 =
, (4.4)
v 1
− v 2
v 2
− v 1
1
( v 1 − v 2 )( v 1 − v 3 )
1
( v 2 − v 1 )( v 2 − v 3 )
1
( v 3 − v 1 )( v 3 − v 2 )
we find that the inverse of V 3 is
v 2 v 3
v 1 v 3
v 1 v 2
( v 2
− v 1 )( v 3
− v 1 )
( v 2
− v 1 )( v 3
− v 2 )
( v 3
− v 1 )( v 3
− v 2 )
v 2 + v 3
v 1 + v 3
v 1 + v 2
−1
3
V
=
.
( v 2
− v 1 )( v 3
− v 1 )
( v 2
− v 1 )( v 3
− v 2 )
( v 3
− v 1 )( v 3
− v 2 )
1
( v 2 − v 1 )( v 3 − v 1 )
1
( v 2 − v 1 )( v 3 − v 2 )
1
( v 3 − v 1 )( v 3 − v 2 )
(4.5)
This inverse will be of great help in the rest of this study to find the filter
h ( ω ) for any desired second-order DMA.
4.2 Second-Order Dipole
The dipole has a one at 0 , a null at 90 , and a one at 180 . Hence, its
corresponding coe„cients to solve (4.1) are α 2,1 = 0, α 2,2 = 1, β 2,1 = 0,
and β 2,1 = 1. The solution to (4.1) is then
1
1 − e ωτ 0
e ωτ 0
1
h ( ω )=
(1 − e ωτ 0 )
1 − e 2 ωτ 0
1
1 − e
1
ωτ 0
+
.
(4.6)
1 − e
ωτ 0
2 ωτ 0
ωτ 0
1 − e
e
Using the approximation e x 1+ x in (4.6), we get
Search WWH ::




Custom Search