Digital Signal Processing Reference
In-Depth Information
10
5
0
10
5
0
−5
−10
−15
−20
−25
−30
−5
−10
−15
−20
−25
−30
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
F (KHZ)
F (KHZ)
( a )
( b )
10
5
0
10
5
0
−5
−10
−15
−20
−25
−30
−5
−10
−15
−20
−25
−30
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
F (KHZ)
F (KHZ)
(c)
(d)
FIG. 3.17 The directivity factor of the first-order hypercardioid, as a function of frequency,
for different values of Δ : (a) Δ = 1 cm, (b) Δ = 2 cm, (c) Δ = 3 cm, and (d) Δ = 5 cm.
( ω )] is maximized with α 1,1 = 3 .
For our hypercardioid ( α 1,1 = 1 / 2) and the supercardioid, the gains are, re-
spectively, 27 / 7 and 3 /
It can also be easily verified that G
DN,1 [ h
15 10
. Figure 3.19 shows a plot of G
2
DN,1 [ h
( ω )]
from (3.52), as a function of α 1,1 .
For β 1,1 = 0, the gain for a point noise source is
1 cos[ ωτ 0 (1 − α 1,1 )]
1 cos[ ωτ 0 (cos θ N
G
NS,1 [ h
( ω )] =
− α 1,1 )] ,
(3.55)
where G
NS,1 [ h
( ω )] = ∞, ∀f for cos θ N = α 1,1 . Figures 3.20 and 3.21 show
plots of G
( ω )], as a function of θ N , for the hypercardioid and super-
cardioid, respectively, for several frequencies and two values of δ . For small
values of ωτ 0 , (3.55) becomes
NS,1 [ h
1
G NS,1 [ h
( ω )]
2 ,
(3.56)
α 1,1
1 − α 1,1
1
1 − α 1,1
+
cos θ N
which corresponds to the theoretical gain of the first-order DMA.
Search WWH ::




Custom Search