Digital Signal Processing Reference
In-Depth Information
5
5
4
4
3
3
2
2
1
1
0 0
0 0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
F (kHz)
F (kHz)
( a )
( b )
5
5
4
4
3
3
2
2
1
1
0 0
0 0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
F (kHz)
F (kHz)
(c)
(d)
FIG. 3.4 The directivity factor of the first-order dipole, as a function of frequency, for
different values of Δ : (a) Δ = 1 cm, (b) Δ = 2 cm, (c) Δ = 3 cm, and (d) Δ = 5 cm.
which corresponds exactly, as expected, to the theoretical value of the direc-
tivity factor for the dipole with diffuse noise [1].
For a point noise source, the gain is
2
′H ( ω ) d ( ω, 1)
h
G
NS,1 [ h
( ω )] =
′H ( ω ) d ( ω, cos θ N ) | 2
|h
| 1 − e ωτ 0 | 2
=
2
1 − e ωτ 0 cos θ N
1 cos( ωτ 0 )
1 cos( ωτ 0 cos θ N ) .
=
(3.17)
Therefore, for θ N =0 , G NS,1 [ h
( ω )] = 1 , ∀f and for θ N = 90 , G NS,1 [ h
( ω )] =
∞, ∀f . Figure 3.5 shows G NS,1 [ h
( ω )], as a function of θ N , for several frequen-
cies and two values of δ . With the conventional approximation, we find that
1
cos 2 θ N ,
G NS,1 [ h
( ω )]
(3.18)
Search WWH ::




Custom Search