Digital Signal Processing Reference
In-Depth Information
9 a 2,1
8 a 2,2
a 2,0
a 2,2
ωτ 0 3 a 2,1 / 2 a 2,2 +
( ωτ 0 ) 2
e
. (7.26)
h ( ω )= a 2,2
( ωτ 0 ) 2
ωτ 0 a 2,1 /a 2,2 a 2,1
a 2,2
( ωτ 0 ) 2
2 e
ωτ 0 a 2,1 / 2 a 2,2 + a 2,1
8 a 2,2
( ωτ 0 ) 2
e
2 = a 2,2
τ 0
Since C
is constant across frequencies, the equivalent filter is
. (7.27)
9 a 2,1
8 a 2,2
a 2,0
a 2,2
ωτ 0 3 a 2,1 / 2 a 2,2 +
( ωτ 0 ) 2
e
( ω )= 1
ω 2
ωτ 0 a 2,1 /a 2,2 a 2,1
a 2,2
( ωτ 0 ) 2
h
2 e
ωτ 0 a 2,1 / 2 a 2,2 + a 2,1
8 a 2,2
( ωτ 0 ) 2
e
As we did it in the previous section, we consider h ( ω ) as the ideal filter
for which (7.2) holds and h
( ω ) the practical beamformer that should be
implemented no matter if (7.2) holds or not.
It can be verified that
B [ h ( ω ) ]= d H ( ω, cos θ ) h ( ω )
3
H n ( ω ) e ω ( n − 1) τ 0 cos θ
=
n=1
1+ ωτ 0 cos θ − ( ωτ 0 ) 2 cos 2 θ
2
= H 1 ( ω )+ H 2 ( ω )
1+2 ωτ 0 cos θ − 2( ωτ 0 ) 2 cos 2 θ
+ H 3 ( ω )
= a 2,0 + a 2,1 cos θ + a 2,2 cos 2 θ,
(7.28)
while
3
n ( ω ) e ω ( n − 1) τ 0 cos θ .
B [ h
( ω ) ]=
H
(7.29)
n=1
Figures 7.1, 7.2, 7.3, and 7.4 display the patterns from (7.29) for the dipole,
cardioid, hypercardioid, and supercardioid, respectively, for several frequen-
cies and two values of δ .
The white noise gain of the beamformer h
( ω ) is
2
n ( ω ) e ω ( n − 1) τ 0
3
n=1 H
G
WN,2 [ h
( ω )] =
.
(7.30)
3
n ( ω ) | 2
Search WWH ::




Custom Search