Digital Signal Processing Reference
In-Depth Information
C 3
ω 3 (1 − α 3,1 ) (1 − α 3,2 )(1 − α 3,3 )
h ( ω )
×
1
ωτ 0 α 3,1 − e
ωτ 0 α 3,2 − e
ωτ 0 α 3,3
−e
,
ωτ 0 ( α 3,1 + α 3,2 ) + e
ωτ 0 ( α 3,2 + α 3,3 ) + e
ωτ 0 ( α 3,1 + α 3,3 )
e
ωτ 0 ( α 3,1 + α 3,2 + α 3,3 )
−e
(5.5)
where the term 1 3 is a third-order low-pass filter. We deduce that the
equivalent filter is 1
( ω )= 1
ω 3
′∗
h
×
1
−e ωτ 0 α 3,1 − e ωτ 0 α 3,2 − e ωτ 0 α 3,3
e ωτ 0 ( α 3,1 + α 3,2 ) + e ωτ 0 ( α 3,2 + α 3,3 ) + e ωτ 0 ( α 3,1 + α 3,3 )
−e ωτ 0 ( α 3,1 + α 3,2 + α 3,3 )
.
(5.6)
Figure 5.1 illustrates the implementation of the third-order differential array.
It can be verified that the beampattern of the beamformer h
( ω ) is
3
( ω ) ]= 1
ω 3
1 − e ωτ 0 (cos θ − α 3,n )
B [ h
,
(5.7)
n=1
which can be approximated as the frequency-independent second-order di-
rectional pattern:
3
( ω ) ] C 3
B [ h
(cos θ − α 3,n ) .
(5.8)
n=1
Figures 5.2, 5.3, and 5.4 display the patterns from (5.7), of Case 1, Case 2,
and Case 3, respectively, for several frequencies and two values of δ .
The white noise gain is
1 Notice that this filter is noncausal for Α 3,1 > 0 or Α 3,2 > 0 or Α 3,3 > 0. In this situation,
a processing delay has to be added.
Search WWH ::




Custom Search