Biology Reference
In-Depth Information
Martinez SE, Wu AY, Glavas NA, Tang XB, Turley S, Hol WG, Beavo JA (2002b) The two GAF
domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding.
Proc Natl Acad Sci USA 99:13260-13265
Martinez SE, Bruder S, Schultz A, Zheng N, Schultz JE, Beavo JA, Linder JU (2005) Crystal
structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: modes of ligand
binding and dimerization. Proc Natl Acad Sci USA 102:3082-3087
Martinez SE, Heikaus CC, Klevit RE, Beavo JA (2008) The structure of the GAF A domain from
phosphodiesterase 6C reveals determinants of cGMP binding, a conserved binding surface, and
a large cGMP-dependent conformational change. J Biol Chem 283:25913-25919
McCahill A, McSorley T, Huston E, Hill EV, Lynch MJ, Gall I, Keryer G, Lygren B, Tasken K,
van Heeke G, Houslay MD (2005) In resting COS1 cells a dominant negative approach shows
that specific, anchored PDE4 cAMP phosphodiesterase isoforms gate the activation, by basal
cyclic AMP production, of AKAP-tethered protein kinase A type II located in the centrosomal
region. Cell Signal 17:1158-1173
McPhee I, Yarwood SJ, Huston E, Scotland G, Beard MB, Ross AH, Houslay ES, Houslay MD
(1999) Association with the src family tyrosyl kinase LYN triggers a conformational change in
the catalytic region of human cAMP-specific phosphodiesterase HSPDE4A4B: consequences
for rolipram inhibition. J Biol Chem 274:11796-11810
Mery PF, Pavoine C, Pecker F, Fischmeister R (1995) Erythro-9-(2-hydroxy-3-nonyl)adenine
inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes. Mol Pharma-
col 48:121-130
Miller CL, Oikawa M, Cai Y, Wojtovich AP, Nagel DJ, Xu X, Xu H, Florio V, Rybalkin SD,
Beavo JA, Chen YF, Li JD, Blaxall BC, Abe J, Yan C (2009) Role of Ca2+/calmodulin-
stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy.
Circ Res 105:956-964
Mongillo M, McSorley T, Evellin S, Sood A, Lissandron V, Terrin A, Huston E, Hannawacker A,
Lohse MJ, Pozzan T, Houslay MD, Zaccolo M (2004) Fluorescence resonance energy transfer-
based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct
functions of compartmentalized phosphodiesterases. Circ Res 95:67-75
Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung Y-F, Dostmann WR, Pozzan T, Kass
DA, Paolocci N, Houslay MD, Zaccolo M (2006) Compartmentalised phosphodiesterase-
2 (PDE2) activity blunts b -adrenergic cardiac inotropy via a b 3 -adrenoceptor/NO/cGMP
dependent pathway. Circ Res 98:226-234
Mullershausen F, Russwurm M, Friebe A, Koesling D (2004) Inhibition of phosphodiesterase type
5 by the activator of nitric oxide-sensitive guanylyl cyclase BAY 41-2272. Circulation
109:1711-1713
Murdoch H, Mackie S, Collins DM, Hill EV, Bolger GB, Klussmann E, Porteous DJ, Millar JK,
Houslay MD (2007) Isoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes
to dissociation by elevated intracellular cAMP levels. J Neurosci 27:9513-9524
Nagayama T, Zhang M, Hsu S, Takimoto E, Kass DA (2008) Sustained soluble guanylate cyclase
stimulation offsets nitric-oxide synthase inhibition to restore acute cardiac modulation by
sildenafil. J Pharmacol Exp Ther 326:380-387
Obernolte R, Bhakta S, Alvarez R, Bach C, Zuppan P, Mulkins M, Jarnagin K, Shelton ER (1993)
The cDNA of a human lymphocyte cyclic-AMP phosphodiesterase (PDE IV) reveals a multi-
gene family. Gene 129:239-247
Ohshiro H, Tonai-Kachi H, Ichikawa K (2008) GPR35 is a functional receptor in rat dorsal root
ganglion neurons. Biochem Biophys Res Commun 365:344-348
Omburo GA, Jacobitz S, Torphy TJ, Colman RW (1998) Critical role of conserved histidine pairs
HNXXH and HDXXH in recombinant human phosphodiesterase 4A. Cell Signal 10:491-497
Omori K, Kotera J (2006) PDE11. In: Beavo JA, Francis SH, Houslay MD (eds) Cyclic nucleotide
phosphodiesterases in health and disease. CRC Press, Boca Raton, pp 255-274
Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309-327
Search WWH ::




Custom Search