Biology Reference
In-Depth Information
Nakamura T, Houchi H, Minami A, Sakamoto S, Tsuchiya K, Niwa Y, Minakuchi K, Nakaya Y
(2001) Endothelium-dependent relaxation by cilostazol, a phosphodiesteras III inhibitor, on rat
thoracic aorta. Life Sci 69:1709-1715
Nakamura N, Hamazaki T, Johkaji H, Minami S, Yamazaki K, Satoh A, Sawazaki S, Urakaze M,
Kobayashi M, Osawa H, Yamabe H, Okomura K (2003) Effects of cilostazol on serum lipid
concentrations and plasma fatty acid composition in type 2 diabetic patients with peripheral
vascular disease. Clin Exp Med 2:180-184
Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A,
Jackson SP (2009) A shear gradient-dependent platelet aggregation mechanism drives throm-
bus formation. Nat Med 15:665-673
Netherton SJ, Maurice DH (2005) Vascular endothelial cell cyclic nucleotide phosphodiesterases
and regulated cell migration: implications in angiogenesis. Mol Pharmacol 67:263-272
Nieswandt B, Watson SP (2003) Platelet-collagen interaction: is GPVI the central receptor? Blood
102:449-461
Nishi T, Tabusa F, Tanaka T, Shimizu T, Nakagawa K (1985) Studies on 2-oxoquinoline
derivatives as blood platelet aggregation inhibitors, IV. Synthesis and biological activity of
the metabolites of 6-[4-(1-cyclohexyl-1H-5-tetrazolyl)butoxy]-2-oxo-1, 2, 3, 4- tetrahydro-
quinoline (OPC-13013). Chem Pharm Bull (Tokyo) 33:1140-1147
Ohshima N, Sato M (1981) Effect of pentoxifylline on microvascular blood flow velocity.
Angiology 32:752-763
Oka RK, Szuba A, Giacomini JC, Cooke JP (2005) A pilot study of L-arginine supplementation on
functional capacity in peripheral arterial disease. Vasc Med 10:265-274
Omi H, Okayama N, Shimizu M, Fukutomi T, Nakamura A, Imaeda K, Okouchi M, Itoh M (2004)
Cilostazol inhibits high glucose-mediated endothelial-neutrophil adhesion by decreasing
adhesion molecule expression via NO production. Microvasc Res 68:119-125
Osinski MT, Schror K (2000) Inhibition of platelet-derived growth factor-induced mitogenesis by
phosphodiesterase 3 inhibitors: role of protein kinase A in vascular smooth muscle cell
mitogenesis. Biochem Pharmacol 60:381-387
Page CP, Spina D (2011) PDE inhibitors in the treatment of inflammatory diseases. In: Francis SH,
Conti M, Houslay MD (eds) Phosphodiesterases as drug targets. Springer, Heidelberg
Sanz MJ, Cortijo J, Taha MA, Cerda-Nicolas M, Schatton E, Burgbacher B, Klar J, Tenor H,
Schudt C, Issekutz AC, Hatzelmann A, Morcillo EJ (2007) Roflumilast inhibits leukocyte-
endothelial cell interactions, expression of adhesion molecules and microvascular permeabil-
ity. Br J Pharmacol 152:481-492
Schafer A, Flierl U, Kobsar A, Eigenthaler M, Ertl G, Bauersachs J (2006) Soluble guanylyl
cyclase activation with HMR1766 attenuates platelet activation in diabetic rats. Arterioscler
Thromb Vasc Biol 26:2813-2818
Schindler U, Strobel H, Schonafinger K, Linz W, Lohn M, Martorana PA, Rutten H, Schindler PW,
Busch AE, Sohn M, Topfer A, Pistorius A, Jannek C, Mulsch A (2006) Biochemistry and
pharmacology of novel anthranilic acid derivatives activating heme-oxidized soluble guanylyl
cyclase. Mol Pharmacol 69:1260-1268
Schmidt U, Han RO, DiSalvo TG, Guerrero JL, Gold HK, Zapol WM, Bloch KD, Semigran MJ
(2001) Cessation of platelet-mediated cyclic canine coronary occlusion after thrombolysis by
combining nitric oxide inhalation with phosphodiesterase-5 inhibition. J Am Coll Cardiol
37:1981-1988
Schwarz UR, Walter U, Eigenthaler M (2001) Taming platelets with cyclic nucleotides. Biochem
Pharmacol 62:1153-1161
Snyder PB (1999) The adipocyte of cGMP-inhibited cyclic nucleotide phosphodiesterase
(PDE3B) as a target for lipolytic and thermogenic agents for the treatment of obesity. Emerg
Ther Targets 3:587-599
Snyder PB, Esselstyn JM, Loughney K, Wolda SL, Florio VA (2005) The role of cyclic nucleotide
phosphodiesterases in the regulation of adipocyte lipolysis. J Lipid Res 46:494-503
Search WWH ::




Custom Search