Biology Reference
In-Depth Information
Croom KF, Curran MP (2008) Sildenafil: a review of its use in pulmonary arterial hypertension.
Drugs 68:383-397
Francis SH, Turko IV, Corbin JD (2001) Cyclic nucleotide phosphodiesterases: relating structure
and function. Prog Nucleic Acid Res Mol Biol 65:1-52
Gross-Langenhoff M, Hofbauer K, Weber J, Schultz A, Schultz JE (2006) cAMP is a ligand for the
tandem GAF domain of human phosphodiesterase 10 and cGMP for the tandem GAF domain
of phosphodiesterase 11. J Biol Chem 281:2841-2846
Handa N, Mizohata E, Kishishita S, Toyama M, Morita S, Uchikubo-Kamo T, Akasaka R,
Omori K, Kotera J, Terada T (2008) Crystal structure of the GAF-B domain from human
phosphodiesterase 10A complexed with its ligand, cAMP. J Biol Chem 283:19657-19664
Hofbauer K, Schultz A, Schultz JE (2008) Functional chimeras of the phosphodiesterase 5 and 10
tandem GAF domains. J Biol Chem 283:25164-25170
Houslay MD (2010) Underpinning compartmentalised cAMP signalling through targeted cAMP
breakdown. Trends Biochem Sci 35:91-100
Houslay MD, Adams DR (2003) PDE4 cAMP phosphodiesterases: modular enzymes that orches-
trate signalling cross-talk, desensitization and compartmentalization. Biochem J 370:1-18
Houslay MD, Schafer P, Zhang KY (2005) Keynote review: phosphodiesterase-4 as a therapeutic
target. Drug Discov Today 10:1503-1519
Kanacher T, Schultz A, Linder JU, Schultz JE (2002) A GAF-domain-regulated adenylyl cyclase
from Anabaena is a self-activating cAMP switch. EMBO J 21:3672-3680
Liu L, Underwood T, Li H, Pamukcu R, Thompson WJ (2002) Specific cGMP binding by the
cGMP binding domains of cGMP-binding cGMP specific phosphodiesterase. Cell Signal
14:45-51
Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the
development of specific therapeutic agents. Pharmacol Ther 109:366-398
Manallack DT, Hughes RA, Thompson PE (2005) The next generation of phosphodiesterase
inhibitors: structural clues to ligand and substrate selectivity of phosphodiesterases. J Med
Chem 48:3449-3462
Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug
development. Nat Rev Drug Discov 5:660-670
Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309-327
Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS (2009) Mechanism for the allosteric
regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length
construct. Proc Natl Acad Sci USA 106:18225-18230
Rose GM, Hopper A, De Vivo M, Tehim A (2005) Phosphodiesterase inhibitors for cognitive
enhancement. Curr Pharm Des 11:3329-3334
Rotella DP (2002) Phosphodiesterase 5 inhibitors: current status and potential applications. Nat
Rev Drug Discov 1:674-682
Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang XB, Beavo JA (2003a) PDE5 is con-
verted to an activated state upon cGMP binding to the GAF A domain. EMBO J 22:469-478
Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA (2003b) Cyclic GMP phosphodiesterases and
regulation of smooth muscle function. Circ Res 93:280-291
Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by
the cAMP-dependent protein kinase. J Biol Chem 271:16526-16534
Stroop SD, Beavo JA (1991) Structure and function studies of the cGMP-stimulated phosphodies-
terase. J Biol Chem 266:23802-23809
Vasta V, Beavo J (2004) Functions and pharmacological inhibitors of cyclic nucleotide phospho-
diesterases. Cell Transm 20:3-8
Wang H, Liu Y, Hou J, Zheng M, Robinson H, Ke H (2007) Structural insight into substrate
specificity of phosphodiesterase 10. Proc Natl Acad Sci USA 104:5782-5787
Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation
and validation of high throughput screening assays. J Biomol Screen 4:67-73
Search WWH ::




Custom Search