Environmental Engineering Reference
In-Depth Information
87. N. Rupa , M. Clavel , P. Bouffl oux , C. Domain and A. Legris , 'Impact of hydro-
gen on plasticity and creep of unirradiated Zircaloy-4 cladding tubes', in
Zirconium in Nuclear Industry: 13th International Symposium , ASTM STP
1423, G.D. Moan and P. Rudling (eds), American Society for Testing and
Materials ( 2000 ) 399-424.
88. D. Setoyama and S. Yamanaka , ' Indentation creep study of zirconium hydro-
gen solid solution', J. Alloy Compds , 379 ( 2004 ) 193 -197.
89. R. Kishore , ' Effect of hydrogen on the creep behavior of Zr-2.5%Nb alloy at
723 K', J. Nucl. Mater ., 385 ( 2009 ) 591 -594.
90. K. Edsinger , 'EPRI and the zero fuel failures program', The Nuclear News
Interview, The Nuclear News, Dec 2010, 40.
91. 'Review of fuel failures in water cooled reactors,' IAEA Nuclear Energy
Series No. NF-T-2.1, International Atomic Energy Agency (2010).
92.
H.M. Chung , 'Assessment of void swelling in austenitic stainless steel core inter-
nals', NUREG/CR-6897, ANL-04/28, U.S. Nuclear Regulatory Commission
Offi ce of Nuclear Regulatory Research, Washington, DC 20555-0001.
93.
K.L.
Murty ,
' Interstitial-impurity
radiation-defect
interactions
in
ferritic
steels ', J. Metals ( 1985 ) 34 -39.
94.
M.S. Wechsler , ' Impurity-defect interactions on radiation hardening and
embrittlement' ,
J. Engg. Mater. Tech . (Transactions ASME), 101
( 1979 )
114 -121.
95. G.R. Odette , ' On the dominant mechanism of irradiation embrittlement of
reactor pressure vessel steels', Scripta Metall . 17 ( 1983 ) 1183 -1188; see also
G.R. Odette and R.K. Nanstad, 'Predictive Reactor Pressure Vessel Steel
Irradiation Embrittlement Models: Issues and Opportunities', J. Metals 61
(2009) 17-23.
96. G.R. Odette and G.E. Lucas , ' Embrittlement of nuclear reactor pressure ves-
sels ', J. Metals 53 ( 2001 ) 18 -22.
97. N. Rupa , H. Churier-Bossennec and G. Bezdikian , 'Materials and NDE aspects
in the RPV operating condition behavior,' in Contribution of Materials
Investigations to Improve the Safety and Performance of LWRs , Fontevraud ,
France, SFEN, Paris, France (2006) 715.
98. 'Use of fracture toughness test data to establish reference temperature
for pressure retaining materials, Section XI, Division 1', ASME Boiler and
Pressure Vessel Code Case N-629, ASME, New York (1999).
￿ ￿ ￿ ￿ ￿ ￿
99.
'Guidelines for application of the master curve approach to reactor pressure
integrity in nuclear plants', Technical Report Series No. 429, International
Atomic Energy Agency, Vienna (2005).
100.
K.L. Murty , R.P. Shogan and W.H. Bamford , ' Dynamic fracture toughness of
irradiated A533 Grade B Class1 pressure vessel steel', Nucl. Techn ., 64 ( 1984 )
268 -274.
101.
R. Wu , R. Sandstorm , F. Seitisleam , ' Low temperature creep crack growth in
low alloy reactor pressure vessel steel', J. Nucl. Mater ., 336 ( 2005 ) 279 -290.
102.
J.C. Van Duysen , P. Todeschini and G. Zacharie , 'Effects of neutron irradia-
tion at temperatures below 500 C on the properties of cold-worked 316 stain-
less steels: a review', in Effects of Radiation on Materials: 16th International
Symposium , ASTM STP 1175, A.S. Kumar , D.S. Gelles , R.K. Nanstad and
Search WWH ::




Custom Search