Agriculture Reference
In-Depth Information
[16] Jyothi, A.N., Sasikiran, K., Nambisan, B., & Balagopalan, C. (2005). Optimization of
glutamic acid production from cassawa strarch factory residues using Brevibacterium
divaricatum . Process Biochemistry, 40, 3576-3579.
[17] Nigam, P. (1994}. Process selection for pretein-enrichment: Fermentation of the sugar
industry by-products molasses and sugar beet pulp. Process Biochemistry, 29, 337-342.
[18] Shojaosadati, S.A., Faraidouni, R., Madadi-Nouei, A., & Mohamadpour, I. (1999).
Protein enrichment of lignocellulosic substrates by solid state fermentation using
Neurospora sitophila . Resources, Conservation and Recycling, 27, 73-87.
[19] Nigam, P., & Vogel, M. (1991). Bioconversion of sugar industry by-products - molasses
and sugar beet pulp for single cell protein production by yeasts. Biomass and Bioenergy,
1, 339-345.
[20] Pandey, A. (1988). Process selection for bioconversion of sugar beet pulp into microbial
protein. Biological Wastes, 26, 71-75.
[21] Vassilev, N., Franco, I., Vassileva, M., & Azcon, R. (1996). Improved plant growth with
rock phosphate solubilized by Aspergillus niger grown on sugar-beet waste. Bioresource
Technology, 55, 237-241.
[22] Rodriguez, R., Vassilev, N., & Azcon, R. (1999). Increases in growth and nutrient upake
of alfalfa grown in soil amended with microbially-treated sugar beet waste. Applied Soil
Ecology, 11, 9-15.
[23] Vassilev, N., Requena, A.R., Nieto, L.M., Nikolaeva, I., & Vassileva, M. (2009).
Production of manganese peroxidase by Phanerochaete chrysosporium grown on
medium containing agro wastes/rock phosphate and biocontrol properties of the final
product. Industrial Crops and Products, 30, 28-32.
[24] Medina, A., Jakobsen, I., Vassilev, N., Azcon, R., & Larsen, J. (2007). Fermentation of
sugar beet waste by Aspergillus niger facilitates growth and P uptake od external
mycelium of mixed populations of arbuscular mycorrhizal fungi . Soil Biology and
Biochemistry, 35, 485-492.
[25] Arntz, H.J., & Buchholz, K. (1988). Prodution of extracellular enzymesby anaerobic
mixed cultures. Annals New York Academy of Science, 542, 126-134.
[26] Poidevin, L., Berrin, J.G., Bennati-Granier, C., Levasseur, A., Harpoel-Gimbert, I.,
Chevret, D., Coutinho, P.M., Henrissat, B., Heiss-Blanquet, S., & Record, E. (2014).
Comparative analysis of Podospora anserina secretomes reveal a large array of
lignocellulose-active enzymes. Applied Microbiology and Biotechnology , 98, 7457-
7469.
[27] Kracher, D., Oros, D., Yao, W., Preims, M., Rezic, I., Haltrich, D., Rezic, T., & Ludwig,
R. (2014). Fungal secretomes enhance sugar beet pulp hydrolysis. Biotechnology
Journal, 9, 483-492.
[28] Antov, M.G., Peričin, D.M., & Dimić, G.R. (2001). Cultivation of Polyporus squamosus
for pectinases production in aqueous two-phase system containing sugar beet extraction
waste. Journal of Biotechnology, 91, 83-87.
[29] Bai, Y.H., Yhang, H.X., Qi, H.Z., Peng, X.W., & Li, B.J. (2004). Pectinase production
by Aspergillus niger using wastewater in solid state fermentation for eliciting plant
disease resistance. Bioresource Technology, 95, 49-52.
[30] Li, Z., Bai, Z., Zhang, B., Xie, H., Hu, Q., Hao, C., Xue, W., & Zhang, H. (2005).
Newly isolated Bacillus gibsonii S-2 capable of using sugar beet pulp for alkaline
Search WWH ::




Custom Search