Biomedical Engineering Reference
In-Depth Information
h
T , d 0 ¼ d 1
d n T
which is parameterized by c 0 ¼ c 1
, and k 0 .
With respect to the unknown system of (16.24)-(16.26), the feedforward controller Q ( u )is
described by
½
c 2
c n
d 2
d j 1 ( t )
dt
¼ F j 1 ( t ) þ gf d ( t )
(16 : 28)
d j 2 ( t )
dt
¼ F j 2 ( t ) þ gu ( t )
(16 : 29)
u ff ( t ) ¼ c T j 1 ( t ) þ d T j 2 ( t ) þ kf d ( t ) ¼ u T j ( t )
(16 : 30)
so as to generate the feedforward input u ff from the desired force signal f d ( t ). Here
T ,
T
u ¼ c T
d T
j ( t ) ¼ j 1 ( t ) T
j 2 ( t ) T
k
f d ( t )
(16 : 31)
and the robot's control input u ( t ) is then given by
u ( t ) ¼ u ff þ u fb ¼ u T ( t ) j ( t ) þ K ( s ) e ( t )
(16 : 32)
Next, introducing a new state equation for the vector j e ( t ) with respect to the control error input
e ( t ) ¼ f d ( t ) f ( t )as
d j e ( t )
dt
¼ F j e ( t ) þ ge ( t )
(16 : 33)
and defining
T
j ( t ): ¼ j 1 ( t ) T j e ( t ) T
j 2 ( t ) T
f d ( t ) e ( t )
(16 : 34)
we can express the total control input u ( t )as
u ( t ) ¼ u 0
j ( t )
(16 : 35)
which is linearly parameterized by u 0 , see Muramatsu and Watanabe (2004) for the details of the
derivation.
Finally, to derive an adaptive rule, let us define
u ( t ): ¼ u T ( t )
j ( t )
(16 : 36)
by replacing u 0 in Equation (16.35) with u ( t ), and defining an error signal « ( t )as
g T
j ( t ) ¼c ( t ) T
« ( t ): ¼ u ( t )
u ( t ) ¼ u 0 u ( t )
f
j ( t )
(16 : 37)
where
c ( t ): ¼ u ( t ) u 0
(16 : 38)
Search WWH ::




Custom Search