Biomedical Engineering Reference
In-Depth Information
REFERENCES
Archives of Science. (2001). All about entropy, the laws of thermodynamics, and order from disorder. http://
www.entropylaw.com, (c) Copyright 2001.
Amendola V, Fabbrizzi L, Mangano C, Pallavicini P. (2001). Molecular machines based on metal ion
translocation. Acc. Chem. Res . 34: 488-93.
Bachand GD, Montemagno CD. (2000). Constructing organic/inorganic NEMS devices powered by biomo-
lecular motors. Biomed. Microdev . 2: 179-84.
Balzani V, Lopez MG, Stoddart JF. (1998). Molecular machines. Acc. Chem. Res . 31: 405-14.
Berg HC. (1974). Dynamic properties of bacterial flagellar motors. Nature 249: 77-9.
Berg HC. (2000). Motile behavior of bacteria. Phys. Today 53: 24 -9.
Block SM. (1998). Kinesin: what gives? Cell 93: 5-8.
Block SM, Goldstein LS, Schnapp BJ. (1990). Bead movement by single kinesin molecules studied with
optical tweezers. Nature 348: 348-52.
Bohm KJ, Steinmetzer P, Daniel A, Baum M, Vater W, Unger E. (1997) Kinesin-driven microtubule motility
in the presence of alkaline-earth metal ions: indication for a calcium ion-dependent motility. Cell
Motil. Cytoskeleton 37: 226 -31.
Boyer PD. (1998). Energy, life and ATP (Nobel Lecture). Angewandte Chemie International Edition 37:
2296 -307.
Braha O, Walker B, Cheley S, Kasianowicz JJ, Song L, Gouaux JE, Bayley H. (1997). Designed pores as
components for biosensors. Chem. Biol . 4: 497-505.
Drexler EK. (1992). Nanosystems: Molecular Machinery, Manufacturing and Computation , John Wiley and
Sons.
Farrell CM, Mackey AT, Klumpp LM, Gilbert SP. (2002). The role of ATP hydrolysis for kinesin processivity.
J. Biol. Chem . 277: 17079-87.
Ferguson JA, Boles TC, Adams CP, Walt DR. (1996). A fiber-optic DNA biosensor microarray for the analysis
of gene expression. Nat. Biotechnol . 14: 1681- 4.
Finer JT, Simmons RM, Spudich JA. (1994). Single myosin molecule mechanics: piconewton forces and
nanometre steps. Nature 368: 113-9.
Foresight Institute. (2000). Molecular Nanotechnology Guidelines: Draft Version 3.7, 4 June 2000.
Frasch WD. (2000). Vanadyl as a probe of the function of the F1-ATPase-Mg 2 รพ cofactor. J. Bioenergetics
Biomembr . 32: 2000.
Freitas Jr., RA. (1999). Nanomedicine, Volume I: Basic Capabilities , Landes Bioscience, Georgetown, Texas,
1999.
Freitas Jr., RA. (2003). Nanomedicine, Volume IIA: Biocompatibility , Landes Bioscience, Georgetown, Texas,
2003.
Freitas Jr., RA, Merkle. RC. (2004). Kinematic Self-Replicating Machines , Landes Bioscience, Georgetown,
Texas; http://www.MolecularAssembler.com/KSRM.htm
Hackney DD. (1996). The kinetic cycles of myosin, kinesin, and dynein. Annu. Rev. Physiol . 58: 731-50.
Harada A. (2001). Cyclodextrin-based molecular machines. Acc. Chem. Res . 34 (16): 456 - 64.
Hellinga HW, Richards FM. (1991). Construction of new ligand binding sites in proteins of known structure. I.
Computer-aided modeling of sites with pre-defined geometry. J Mol. Biol . 222: 763-85.
Hess H, Vogel V. (2001). Molecular shuttles based on motor proteins: active transport in synthetic environ-
ments. J. Biotechnol . 82: 67-85.
Howard J, Hudspeth AJ, Vale RD. (1989). Movement of microtubules by single kinesin molecules. Nature
342: 154 -8.
Hu J, Zhang Y, Gao H, Li M, Hartman U. (2002). Artificial DNA patterns by mechanical nanomanipulation.
Nanoletters 2: 55-7.
Khan S, Zhao R, Reese TS. (1998). Architectural features of the Salmonella typhimurium flagellar motor
switch revealed by disrupted C-rings. J. Struct. Biol . 122: 311-9.
Kinosita K Jr., Yasuda R, Noji H, Adachi K (2000). A rotary molecular motor that can work at near 100%
efficiency. Phil. Trans. R. Soc. Lond. B 355: 473- 489.
Kitamura K, Tokunaga M, Iwane AH, Yanagida T. (1999). A single myosin head moves along an actin
filament with regular steps of 5.3 nanometres. Nature 397: 129-34.
Search WWH ::




Custom Search