Civil Engineering Reference
In-Depth Information
are negligible. Thus the longitudinal strains ε vary linearly through the depth of
the beam, as shown in Figure 5.4, as do the longitudinal stresses σ . It is shown in
Section 5.8.1 that the moment resultant M y of these stresses is
M y =− EI y d 2 w
d x 2
(5.2)
wherethesignconventionsforthemoment M y andthedeflection w areasshown
in Figure 5.5, and that the stress at any point in the section is
σ = M y z
I y
(5.3)
inwhichtensilestressesarepositive.Inparticular,themaximumstressesoccurat
the extreme fibres of the cross-section, and are given by
σ max = M y z T
I y
=− M y
W el , yT ,
in compression, and
(5.4)
σ max = M y z B
I y
M y
W el , yB ,
=
in tension, in which W el , yT =− I y / z T and W el , yB = I y / z B are the elastic section
moduli for the top and bottom fibres, respectively, for bending about the y axis.
The corresponding equations for bending in the principal plane xy are
M z = EI z d 2 v
d x 2
(5.5)
wherethesignconventionsforthemoment M z andthedeflection v arealsoshown
in Figure 5.5,
σ =− M z y / I z
(5.6)
2
d 2
w
δ x
d
x
M
z d A
=
y
A
M y
M y
2
-z T
d
w
= -
EI
C
b
y
2
d
x
y
z
z
z B
= E
δ x
δ x
z
(c) Strains
(d) Stresses
(e) Moment resultant
(a) Cross-section
(b) Bending
Figure 5.4 Elastic bending of beams.
 
Search WWH ::




Custom Search