Graphics Reference
In-Depth Information
For example:
q 1 =
0 . 6
+
2 i
+
4 j
3 k
q 2 =
+
+
+
0 . 2
3 i
5 j
7 k
q 1 +
q 2 =
+
+
+
0 . 8
5 i
9 j
4 k
q 1
q 2 =
0 . 4
i
j
10 k .
5.4 Multiplying Quaternions
When multiplying quaternions we must employ the following rules:
i 2
j 2
k 2
=−
1 ,
=−
1 ,
=−
1 ,
ijk
=−
1
=
=
=
ij
k ,
jk
i ,
ki
j
=−
=−
=−
j .
Note that quaternion addition is commutative, however, the rules make quaternion
products non-commutative. For example:
ji
k ,
kj
i ,
ik
q 1 =
s 1 +
v 1 =
s 1 +
x 1 i
+
y 1 j
+
z 1 k
q 2 =
s 2 +
v 2 =
s 2 +
x 2 i
+
y 2 j
+
z 2 k
q 1 q 2 =
(s 1 s 2
x 1 x 2
y 1 y 2
z 1 z 2 )
+
(s 1 x 2 +
s 2 x 1 +
y 1 z 2
y 2 z 1 ) i
+
(s 1 y 2 +
s 2 y 1 +
z 1 x 2
z 2 x 1 ) j
+
(s 1 z 2 +
s 2 z 1 +
x 1 y 2
x 2 y 1 ) k
=
s 1 s 2
(x 1 x 2 +
y 1 y 2 +
z 1 z 2 )
+
s 1 (x 2 i
+
y 2 j
+
z 2 k )
+
s 2 (x 1 i
+
y 1 j
+
z 1 k )
x 2 y 1 ) k
which can be rewritten using the dot and cross product notation as
q 1 q 2 =
+
(y 1 z 2
y 2 z 1 ) i
+
(z 1 x 2
z 2 x 1 ) j
+
(x 1 y 2
s 1 s 2
v 1 ·
v 2 +
s 1 v 2 +
s 2 v 1 +
v 1 ×
v 2
where
s 1 s 2
v 1 ·
v 2
is a scalar, and
s 1 v 2 + s 2 v 1 +
v 1 ×
v 2
is a vector.
For example:
q 1 =
1
+
2 i
+
3 j
+
4 k
q 2 =
2
i
+
5 j
2 k
q 1 q 2 =
( 1
+
2 i
+
3 j
+
4 k )( 2
i
+
5 j
2 k )
q 1 q 2 = 1
2 )
×
2
2
×
(
1 )
+
3
×
5
+
4
×
(
+
1 (
i
+
5 j
2 k )
+
2 ( 2 i
+
3 j
+
4 k )
+ 3
5 i
2
1 ) j
+ 2
1 ) k
×
(
2 )
4
×
×
(
2 )
4
×
(
×
5
3
×
(
=−
3
+
3 i
+
11 j
+
6 k
26 i
+
13 k
=−
3
23 i
+
11 j
+
19 k
Search WWH ::




Custom Search