Graphics Reference
In-Depth Information
therefore,
s 2
2
2 s 2
−|
v
|
=
1
and
+ 2 s 2
1 u
qpq 1
=
2 ( v
·
u ) v
+
2 s v
×
u .
u ) v , ( 2 s 2
We can now represent the three terms 2 ( v
·
1 ) u and 2 s v
×
u as three
individual matrices, which can be summed together:
2 ( v
·
u ) v
=
2 (xx u +
yy u +
zz u )(x i
+
y j
+
z k )
2 x 2
2 xy
2 xz
x u
y u
z u
2 y 2
=
2 xy
2 yz
2 z 2
2 xz
2 yz
2 s 2
1 u
= 2 s 2
1 x u i
+ 2 s 2
1 y u j
+ 2 s 2
1 z u k
2 s 2
1
0
0
x u
y u
z u
2 s 2
=
0
1
0
2 s 2
0
0
1
2 s (yz u
yx u ) k
×
=
+
(zx u
+
(xy u
2 s v
u
zy u ) i
xz u ) j
0
2 sz
2 sy
x u
y u
z u
.
=
2 sz
0
2 sx
2 sy
2 sx
0
Adding these matrices together produces
2 (s 2
x 2 )
+
1 (xy
sz)
2 (xz
+
sy)
x u
y u
z u
qpq 1
2 (s 2
y 2 )
=
2 (xy
+
sz)
+
1 (yz
sx)
2 (s 2
z 2 )
2 (xz
sy)
2 (yz
+
sx)
+
1
(11.3)
or
.
2 (y 2
+ z 2 )
1
2 (xy sz)
2 (xz + sy)
x u
y u
z u
qpq 1
2 (x 2
z 2 )
=
2 (xy
+
sz)
1
+
2 (yz
sx)
2 (x 2
y 2 )
2 (xz
sy)
2 (yz
+
sx)
1
+
(11.4)
To compute the equivalent matrix for q 1 pq all that we have to do is reverse the
sign of 2 s v
×
u :
2 (s 2
+ x 2 )
1
2 (xy + sz)
2 (xz sy)
x u
y u
z u
q 1 pq
2 (s 2
y 2 )
=
2 (xy
sz)
+
1
2 (yz
+
sx)
2 (s 2
z 2 )
2 (xz
+
sy)
2 (yz
sx)
+
1
(11.5)
or
Search WWH ::




Custom Search