Graphics Reference
In-Depth Information
Fig. 11.4
The vect or 2 i is
rotated 90° to i + 2 j + k
Let θ
=
90°, therefore,
0
1 1
k ( 0
1
2
qp
=
+
2
i
+
+
2 i )
2
2 (
=
1
+
j ).
Next, we post-multiply by q 1
j ) 0
2 k
2
2 (
1
2 i
1
qpq 1
=
1
+
1
2 i
2 k
2
2
1
2 k
1
2 i
1
=
+
+
=
i
+
k
i
+
k
2 k
which confirms our prediction. Now let's show how this double angle arises.
We begin by defining a unit quaternion q :
q
=
v
and we will eventually assign values to s and λ . The vector u to be rotated is a pure
quaternion:
=
s
+
λ
ˆ
p
=
0
+
u .
The inverse quaternion q 1
is
q 1
=
s
λ
v
ˆ
therefore, the triple qpq 1
is
qpq 1
=
+
ˆ
+
ˆ
(s
λ
v )( 0
u )(s
λ
v )
=
(
λ v
·
u
+
s u
+
λ v
×
u )(s
λ v )
λ 2 ( ˆ
=−
λs ˆ
v
·
u
+
λs u
· ˆ
v
+
v
×
u )
· ˆ
v
+ λ 2 ( ˆ
+ s 2 u
v
·
u ) ˆ
v
+ λs ˆ
v
×
u
λ 2 ( ˆ
λs u
× ˆ
v
v
×
u ) × ˆ
v
= λ 2 ( ˆ
+ λ 2 ( ˆ
+ s 2 u
λ 2 ( ˆ
v
×
u ) · ˆ
v
v
·
u ) ˆ
v
+
2 λs ˆ
v
×
u
v
×
u ) × ˆ
v .
Search WWH ::




Custom Search