Image Processing Reference
In-Depth Information
i 2 bb
I 20 I 12 =( c + ic ) I 12 = c ( b 2
I 12 =( b 2
b 2 )
b 2 )+2 c bb + i [ c ( b 2
b 2 )
i 2 cbb ]
3 b 2 b )
I 30 I 12 =( a + ia ) I 12 = ab ( b 2
I 12 =( b 3
3 bb 2 )+ i ( b 3
3 b )
a b ( b 2
3 b 2 )+
+ i [ a b ( b 2
3 b )
ab (3 b 2
b 2 )]
We identify then H 1 ···
H 7
H 1 = d = I 11
H 2 = c 2 + c 2 =
2
|
I 20 |
H 3 = a 2 + a 2 =
2
|
I 30 |
H 4 = b 2 + b 2 =
2
|
I 12 |
H 5 = ab ( b 2
3 b )
a b ( b 2
3 b 2 )=
( I 30 I 12 )
H 6 = c ( b 2 − b 2 )+2 c bb = ( I 20 I 12 )
H 7 = a b ( b 2 3 b ) − ab (3 b 2 − b 2 )= ( I 30 I 12 )
so that
H 1 = I 11
(17.24)
I 20 | 2
H 2 =
|
(17.25)
I 30 | 2
H 3 =
|
(17.26)
I 12 | 2
H 4 =
|
(17.27)
I 12 )
H 5 =
( I 30 ·
(17.28)
I 12 )
H 6 =
( I 20 ·
(17.29)
I 12 )
H 7 =
( I 30 ·
(17.30)
By inspection and using the above theorem, it then follows that these scalars are
rotation-invariant. Using the theorem again, the normalized quantities
H 2
H 1
H 2 =
(17.31)
H 3
H 2 . 5
1
H 3 =
(17.32)
H 4
H 2 . 5
1
H 4 =
(17.33)
H 5
H 1
H 5 =
(17.34)
H 6
H 3 . 5
1
H 6 =
(17.35)
H 7
H 1
H 7 =
(17.36)
will make these invariants also scale-invariant.
 
Search WWH ::




Custom Search