Biomedical Engineering Reference
In-Depth Information
2. Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its appli-
cation to conduction and excitation in nerve. J Physiol Lond 117 :500-544.
3. Kandel ER, Schwartz JH, Jessel TM. 1991. Principles of neural science , 3rd ed. Elsevier, New
York.
4. Knight BW, Toyoda JI, Dodge Jr, FA. 1970. A quantitative description of the dynamics of
excitation and inhibition in the eye of Limulus . J Gen Physiol 56 :421-437.
5. Poznanski, RR, Bell J. 2000. Theoretical analysis of the amplification of synaptic potentials by
small clusters of persistent sodium channels in dendrites. Math Biosci 166 :123-147.
6. Poznanski RR, Bell J. 2000. A dendritic cable model for the amplification of synaptic poten-
tials by an ensemble average of persistent sodium channels. Math Biosci 166 :101-121.
7. Poznanski RR. 1988. Membrane voltage changes in passive dendritic trees: a tapering equiva-
lent cylinder model. IMA J Math Appl Med Biol 5 :113-145.
8. Reeke GN, Poznanski RR, Lindsay K, Rosenberg J, Sporns O, eds. 2005. Modeling in the
neurosciences , 2nd ed. CRC Press, Boca Raton, FL.
9. Rall W, Agmon-Snir H. 1998. Cable theory for dendritic neurons. In Methods in neuronal
modeling: from ions to networks , 2nd ed., pp. 27-92. Ed CI Koch, I Segev. MIT Press, Cam-
bridge.
10.
Segev I, Burke R. 1998. Compartmental models of complex neurons. In Methods in neuronal
modeling: from ions to networks , 2nd ed., pp. 93-136. MIT Press, Cambridge.
11.
De Schutter E, Bower JM. 1994. An active membrane model of the cerebellar Purkinje cell, I:
simulation of current clamps in slice. J Neurophysiol 70 :375-400.
12.
De Schutter E, Bower JM. 1994. An active membrane model of the cerebellar Purkinje cell, II:
simulation of synaptic responses. J Neurophysiol 70 :401-419.
13.
FitzHugh R. 1961. Impulses and physiological states in models of nerve membrane. Biophys J
1 :445-466.
14.
Nagumo JS, Arimato S, Yoshizawa S. 1962. An active pulse transmission line simulating a
nerve axon. Proc IRE 50 :2061-2070.
15.
Ermentrout GB, Chow CC. 2002. Modeling neural oscillations. Physiol Behav 77 :629-633.
16.
Reich DS, Victor JD, Knight BW, Ozaki T,, Kaplan E. 1997. Response variability and timing
precision of neuronal spike trains in vivo. J Neurophysiol 77 :2836-2841.
17.
Adrian ED. 1926. The impulses produced by sensory nerve endings. J Physiol (Lond) 61 :49-
72.
18.
McClelland JL, Rumelhart DE, PDP Research Group. 1986. Parallel distributed processing:
explorations in the microstructure of cognition , Vol. 2: Psychological and biological models .
MIT Press, Cambridge.
19.
Rumelhart DE, McClelland JL, PDP Research Group. 1986. Parallel distributed processing:
explorations in the microstructure of cognition , Vol. 1: Foundations . MIT Press, Cambridge.
20.
Mainen ZF, Sejnowski TJ. 1995. Reliability of spike timing in neocortical neurons. Science
268 :1503-1506.
21.
Shadlen MN, Newsome WT. 1998. The variable discharge of cortical neurons: implications for
connectivity, computation, and information coding. J Neurosci 18 :3870-3896.
22.
Maass W, Bishop CM, eds. 1999. Pulsed neural networks . MIT Press, Cambridge.
23.
Shannon CE. 1948. A mathematical theory of communication. Bell Syst Tech J 27 :379-423,
623-656.
24.
Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W. 1997. Spikes: exploring the neu-
ral code . MIT Press, Cambridge.
25.
Reeke GN, Coop AD. 2004. Estimating the temporal interval entropy of neuronal discharge.
Neural Comput 16 :941-970.
26.
Grammont F, Riehle A. 2003. Spike synchronization and firing rate in a population of motor
cortical neurons in relation to movement direction and reaction time. Biol Cybern 88 :360-373.
27.
Svirskis G, Hounsgaard J. 2003. Influence of membrane properties on spike synchronization in
neurons: theory and experiments. Netw-Comput Neural Syst 14 :747-763.
Search WWH ::




Custom Search