Biomedical Engineering Reference
In-Depth Information
6.
REFERENCES
1. Noble D. 1960. Cardiac action and pace maker potentials based on the Hodgkin-Huxley equa-
tions. Nature 188 :495.
2. Noble D, 1962. A modification of the Hodgin-Huxley equations applicable to Purkinje fiber
action and pacemaker potentials. J Physiol 160 :317.
3. Moe GK, Mendez C. 1966. Simulation of impulse propagation in cardiac tissue. Ann NY Acad
Sci 128 (3):766-771.
4. Marban E, Yamagishi T, and Tomaselli GF. 1998. Structure and function of voltage-gated
sodium channels. J Physiol (Lond) 508 (pt 3):647-657.
5. Kemp TF, Hell KT. 2000. Regulation of cardiac L-type calcium channels by protein kinase A
and protein kinase C. Circ Res 87 :1095.
6. Chay TR. 1991. The Hodgkin-Huxley Na+ channel model versus the five-state Markovian
model. Biopolymers 31 (13):1483-1502.
7. Shannon TR, Ginsburg KS, Bers DM. 1998. Reverse mode of the SR Ca pump limits SR Ca
uptake in permeabilized and voltage clamped myocytes. Ann NY Acad Sci 853 :350-352.
8. DiFrancesco D, Noble D. 1985. A model of cardiac electrical activity incorporating ionic
pumps and concentration changes. Phil Trans Roy Soc B 307 :353-398.
9. Luo C, Rudy Y. 1991. A model of the ventricular cardiac action potential: depolarization,
repolarization and their interaction. Circ Res 68 :1501-1526.
10. Luo CH, Rudy Y. 1994. A dynamic model of the cardiac ventricular action potential, I: simula-
tions of ionic currents and concentration changes. Circ Res 74 :1071-1096.
11. Noble DS, Noble SJ, Bett CL, Earm YE, Ko WK, So IK. 1991. The role of sodium-calcium
exchange during the cadiac action potential. Ann NY Acad Sci 639 :334-354.
12. Jafri S, Rice JJ, Winslow RL 1998. Cardiac Ca2+ dynamics: the roles of ryanodine receptor
adaptation and sarcoplasmic reticulum load. Biophys J 74 :1149-1168.
13. Wagner MB, Golod D, Wilders R, Verheijck EE, Joyner RW, Kumar R, Jongsma HJ, Van
Ginneken AC, Goolsby WN. 1997. Modulation of propagation from an ectopic focus by elec-
trical load and by extracellular potassium. Am J Physiol 272( 4, pt 2):H1759-H1769.
14. Noble D, Noble SJ. 1984. A model of sino-atrial node electrical activity based on a modifica-
tion of the DiFrancesco-Noble equations. Proc R Soc Lond B Biol Sci 222 (1228):295-304.
15. Demir SS, Clark JW, Murphey CR, Giles WR 1994. A mathematical model of a rabbit si-
noatrial node cell. Am J Physiol 266 (3, pt 1):C832-C852.
16. Dokos S, Celler B, Lovell N. 1996. Ion currents underlying sinoatrial node pacemaker activity:
a new single cell mathematical model. J Theor Biol 181 (3):245-272.
17. Courtemanche M, Ramirez RJ, Nattel S. 1998. Ionic mechanisms underlying human atrial
action potential properties: insights from a mathematical model. Am J Physiol Heart Circ
Physiol 275 (1):H301-H321.
18. Nygren A, Fiset C, Firek L, Clark JW, Lindblad DS, Clark RB, Giles WR. 1998. Mathematical
model of an adult human atrial cell: the role of K+ currents in repolarization. Circ Res
82 (1):63-81.
19. Stern M. 1992. Theory of excitation-contraction coupling in cardiac muscle. Biophys J
63 :497-517.
20.
Stern M, Song L, Cheng H, Sham J, Yang H, Boheler K. Rios E. 1999. Local control models of
cardiac excitation-contraction coupling: a possible role for allosteric interactions between ry-
anodine receptors. J Gen Physiol 113 (3):469-489.
21.
Rice JJ, Jafri MS, Winslow RL. 2000. Modeling short-term interval-force relations in cardiac
muscle. Am J Physiol 278 :H913.
22.
Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its appli-
cation to conduction and excitation in nerve. J Physiol 117 :500-544.
Search WWH ::




Custom Search