Geology Reference
In-Depth Information
4. Bray M, Han D (2004) Identi cation of support vector machines for runoff modelling.
J. Hydroinf 6(4):265 - 280
5. Chang FJ, Chiang YM, Chang LC et al (2007) Multi-step-ahead neural networks for ood
forecasting. Hydrolog Sci J 52(1):114 - 130
6. Chon KH (1997) Cohen RL (1997) Linear and nonlinear ARMA model parameter estimation
using an artificial neural network. IEEE Trans Biomed Eng 44(3):168
174
7. Halff AH, Halff HM, Azmoodeh M (1993) Predicting runoff from rainfall using neural
networks. In: Kuo CY (ed) Proceedings of the symposium sponsored by the hydraulics
division of ASCE, Engineering hydrology. San Francisco, CA, July 25
-
30, 1993. ASCE,
-
765
8. Han D, Chan L, Zhu N et al (2007) Flood forecasting using support vector machines.
J Hydroinf 9(4):267
New York, pp 760
-
276
9. Kisi O (2008) Stream flow forecasting using neuro-wavelet
-
technique. Hydrol Process
4152
10. Kourentzes N (2009)
22:4142
-
Input variable selection for time series forecasting with arti cial neural
networks: an empirical evaluation across varying time series frequencies ' , PhD, Management
Science, Lancaster
11. Maier HR, Dandy GC (2002) Determining inputs for neural network models of multivariate
time series. Comput Aided Civil Infrastruct Eng 12(5):353 - 368
12. Maier HR, Dandy GC (1997) Determining inputs for neural network models of multivariate
time series. Microcomput Civil Eng 12(5):353 - 368
13. Maier HR, Jain A, Dandy GC, Sudheer KP (2010) Methods used for the development of
neural networks for the prediction of water resource variables in river systems: Current status
and future directions. Environ Modell Softw 25(8):891
'
909
14. May R, Dandy G, Maier H (2011) Review of input variable selection methods for artificial
neural networks. In: Suzuki K (ed) Artificial neural networks
-
methodological advances and
biomedical applications. InTech, New York
15. May RJ, Maier HR, Dandy GC, Fernando TG (2008) Non linear variable selection for artificial
neural networks using partial mutual information. Environ Modell Softw 23:1312
1326
16. Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2004) A neuro-fuzzy computing
technique for modeling hydrological time series. J Hydrol 291:52
-
66
17. Nourani V, Baghanam AH, Adamowski J, Kisi O (2014). Applications of hybrid Wavelet-
Arti cial Intelligence models in hydrology. A review. J Hydrol. In press. http://dx.doi.org/10.
1016/j.jhydrol.2014.03.057
18. Remesan R, Ahmadi A, Han D (2010) Effect of data time interval on real-time
-
ood
forecasting. J Hydroinformatics 12(4):396 - 407
19. Remesan R, Shamim MA, Han D, Mathew J (2009) Runoff prediction using an integrated
hybrid modelling scheme. J Hydrol 372(1):48 - 60
20. Smith J, Eli RN (1995) Neural network models of rainfall runoff process. J Water Resour
Planning Manage ASCE 121(6):499 - 508
21. Sudheer KP, Gosain AK, Ramasastri KS (2002) A data-driven algorithm for constructing
artificial neural network rainfall-runoff models. Hydrol Process 16:1325
1330
22. Tayfur G, Guldal V (2006) Artificial neural networks for estimating daily total suspended
sediment in natural streams Nord. Hydrol 37(1):69
-
79
23. Vernieuwe H, Georgieva O, De Baets B, Pauwels VRN, Verhoest NEC, De Troch FP (2005)
Comparison of data-driven Takagi-Sugeno models of rainfall
-
discharge dynamics. J Hydrol
-
186
24. Wilby RL, Abrahart RJ, Dawson CW (2003) Detection of conceptual model rainfall
302:173
-
runoff
181
25. Yurdusev MA, Firat M (2009) Adaptive neuro fuzzy inference system approach for municipal
water consumption modeling: an application to Izmir. Turkey J Hydrol 365:225 - 234
processes inside an arti cial neural network. Hydrol Sci J 48(2):163
-
 
Search WWH ::




Custom Search