Geology Reference
In-Depth Information
3. Anctil F, Tape TG (2004) An exploration of arti cial neural network rainfall-runoff
forecasting combined with wavelet decomposition. J Env Eng Sci 3:S121 - S128
4. ASCE Task Committee on Application of Arti cial Neural Networks in Hydrology (2000a)
Artificial neural networks in hydrology I: preliminary concepts. J Hydraul Eng ASCE
5(2):115 - 123
5. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b)
Artificial neural networks in hydrology
II: hydrologic applications. J Hydraul Eng ASCE
137
6. Bartolini P, Salas JD, Obeysekera JTB (1988) Multivariate periodic ARMA(1,1) processes.
Water Resour Res 24(8):1237
5(2):124
-
1246
7. Bayazit M, Akso H (2001) Using wavelets for data generation. J Appl Stat 28(2):157
-
166
8. Bayazit M, Onoz B, Aksoy H et al (2001) Nonparametric stream ow simulation by wavelet
or Fourier analysis. Hydrol Sci J 46(4):623
-
634
-
s guide to support vector machines. Technical Report.
http://pyml.sourceforge.net/doc/howto.pdf
10. Bishop CM (1996) Neural networks for pattern recognition. Oxford University Press. ISBN
0-19-853864-2
11. Boser BE, Guyon I, Vapnik V (1992) A training algorithm for optimal margin classi ers. In:
Proceedings fifth ACM workshop on computational learning theory, pp 144 - 152
12. Box GE, Jenkins G (1970) Time series analysis, forecasting and control. Revised edition.
Holden-Day, San Francisco (2nd edn 1976)
13. Box GEP, Jenkins GM (1976) Time series analysis: Forecasting and control. Holden-Day,
San Francisco
14. Bray M, Han D (2004) Identification of support vector machines for runoff modelling.
J Hydroinf 6(4):265
9. Ben-Hur A, Weston J (2012) A user
'
280
15. Chanerley AA, Alexander NA (2007) Correcting data from an unknown accelerometer using
recursive least squares and wavelet de-noising. Comput Struct 85:1679
-
1692
16. Chang TJ, Delleur JW, Kavvas ML (1987) Application of discrete autoregressive moving
average models for estimation of daily runoff. J Hydrol 91:119
-
135
17. Chen S-T, Yu P-S (2007) Pruning of support vector networks on flood forecasting. J Hydrol
347(1
-
78
18. Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir in ow forecasting using arti cial
neural networks with stopped training approach. J Hydrol 230(3
2):67
-
-
257
19. Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure
Appl Math 41:909 - 996
20. Daubechies I (1992) Ten lectures on wavelets. SIAM, ch, Philadelphia, PA, pp 3 - 5
21. Dawson CW, Wilby RL (2001) Hydrological modelling using arti cial neural networks.
Prog Phys Geogr 25(1):80 - 108
22. Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V et al (1997) Support vector
regression machines. In: Mozer M, Jordan M, Petsche T (eds) Advances in neural
information processing dsystems vol 9. MIT Press, Cambridge, pp 155
-
4):244
-
161
23. Durrant PJ (2001) winGamma: a non-linear data analysis and modelling tool with
applications to flood prediction. Ph.D. thesis, Department of Computer Science, Cardiff
University, Wales, UK
24. Elman J (1990) Finding structure in time. Cognitive Science 14(2):179
-
211
25. Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, New York
26. Ganguli P, Reddy MJ (2013) Ensemble prediction of regional droughts using climate inputs
and the SVM
-
copula approach. hydrological processes. doi: 10.1002/hyp.9966
27. Gautam D (2000) Neural network based system identi cation approach for the modelling of
water resources and environmental systems. 2nd Joint Workshop on AI Methods in Civil
Engineering Applications
Cottbus/Germany.
http://www.bauinf.tu-cottbus.de/Events/
Neural00/Participants.html . Accessed March 26 - 28
28. Goh T, Tan K (1977) Stochastic modelling and forecasting of solar radiation data. Sol
Energy 19(6):755 - 757. doi: 10.1016/0038-092X(77)90041-X
 
Search WWH ::




Custom Search