Environmental Engineering Reference
In-Depth Information
[6] R. C. John, A. Y. Itah, J. P. Essien and D. I. Ikpe, "Fate of nitrogen-fixing bacteria in
crude oil contaminated wetland ultisol", Bull. Environ. Contam. Toxicol. , vol. 87, no. 3,
pp. 343-353, 2011.
[7] C. Guo, L. Ke, Z. Dang and N.F. Tam, "Temporal changes in Sphingomonas and
Mycobacterium populations in mangrove sediments contaminated with different
concentrations of polycyclic aromatic hydrocarbons (PAHs)", Marine Pollution
Bulletin , vol. 62, no. 1, pp. 133-139, 2011.
[8] B. Hu, L. Shen, X. Lian, Q. Zhu, S. Liu, Q. Huang, Z. He, et al., "Evidence for nitrite-
dependent anaerobic methane oxidation as a previously overlooked microbial methane
sink in wetlands", Proceedings of the National Academy of Science , vol. 111, pp. 4495-
4500, 2014.
[9] H. M. Siljanen, A. Saari, L. Bodrossy and P. J. Martikainen, "Effects of nitrogen load
on the function and diversity of methanotrophs in the littoral wetland of a boreal lake",
Frontiers in Microbiology , vol. 3, pp. 39, 2012.
[10] R. M. Peralta, C. Ahn and P. M. Gillevet, "Characterization of soil bacterial community
structure and physicochemical properties in created and natural wetlands", Science of
the Total Environment, vol. 443C, pp. 725-732, 2012.
[11] R. C. Wilhelm, T. D. Niederberger, C. Greer and L. G. Whyte, "Microbial diversity of
active layer and permafrost in an acidic wetland from the Canadian High Arctic",
Canadian Journal of Microbiology , vol. 57, no. 4, pp. 303-315, 2011.
[12] R. Prasanna, L. Nain, A. K. Pandey and A. K. Saxena, "Microbial diversity and
multidimensional interactions in the rice ecosystem", Archives of Agronomy and Soil
Science , vol. 58, no. 7, pp. 723-744, 2012.
[13] M. E. Farias, M. Contreras, M. C. Rasuk, D. Kurth, M. R. Flores, D. G. Poire, F.
Novoa, et al., "Characterization of bacterial diversity associated with microbial mats,
gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and
La Brava, Salar de Atacama, Chile", Extremophiles , vol. 18, no. 2, pp. 311-329, 2014.
[14] Y. F. Wang and J. D. Gu, "Higher diversity of ammonia/ammonium-oxidizing
prokaryotes in constructed freshwater wetland than natural coastal marine wetland",
Applied Microbiology and Biotechnology , vol. 97, no. 15, pp. 7015-7033, 2013.
[15] H. Schmidt and T. Eickhorst, "Spatio-temporal variability of microbial abundance and
community structure in the puddled layer of a paddy soil cultivated with wetland rice
( Oryza sativa L. )", Applied Soil Ecology , vol. 72, no. pp. 93-102, 2013.
[16] B. Ma, X. F. Lv, A. Warren and J. Gong, "Shifts in diversity and community structure
of endophytic bacteria and archaea across root, stem and leaf tissues in the common
reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of
northern China", Antonie Van Leeuwenhoek International Journal of General and
Molecular Microbiology , vol. 104, no. 5, pp. 759-768, 2013.
[17] M. Bouali, E. Pelletier, S. Chaussonnerie, D. Le Paslier, A. Bakhrouf and A. Sghir,
"Characterization of rhizosphere prokaryotic diversity in a horizontal subsurface flow
constructed wetland using a PCR cloning-sequencing based approach", Applied
Microbiology and Biotechnology , vol. 97, no. 9, pp. 4221-4231, 2013.
[18] P. Vladar, A. Rusznyak, K. Marialigeti and A. K. Borsodi, "Diversity of sulfate-
reducing bacteria inhabiting the rhizosphere of Phragmites australis in Lake Velencei
(Hungary) revealed by a combined cultivation-based and molecular approach",
Microbial Ecology , vol. 56, no. 1, pp. 64-75, 2008.
Search WWH ::




Custom Search