Biomedical Engineering Reference
In-Depth Information
[19]
http://www.nanotechproject.org/inventories/consumer/analysis_draft/
[20]
http://nanogloss.com/mems/mems-devices/#ixzz2cX6xqpsU
[21]
Freitas RAJ (1999). Nanomedicine, Volume I: Basic Capabilities . Landes Bioscience: Georgetown,
TX. http://www.nanomedicine.com/NMI.htm
[22]
Gajewicz A, B Rasulev, TC Dinadayalane, P Urbaszek, T Puzyn, D Leszczynska and J
Leszczynski (2012). Advancing risk assessment of engineered nanomaterials: Application of
computational approaches. Advanced Drug Delivery Reviews 64: 1663-1693.
[23]
Suzdalev IP (2002). Dimensional effects and intercluster interactions in nanosystems. Russian
Journal of General Chemistry 72: 551-568.
[24]
Shevchenko VY, AE Madison and VE Shudegov (2003). The structural diversity of the nano-
world. Glass Physics and Chemistry 29: 577-582.
[25]
Tiwari JN, RN Tiwari and KS Kim (2012). Zero-dimensional, one-dimensional, two-dimensional
and three-dimensional nanostructured materials for advanced electrochemical energy devices.
Progress in Materials Science 57: 724-803.
[26]
Shrestha LK, Q Ji, T Mori, K Miyazawa, Y Yamauchi, JP Hill and K Ariga (2013). Fullerene nano-
architectonics: From zero to higher dimensions. Chemistry - An Asian Journal 8: 1662-1679.
[27]
Maynard AD and RJ Aitken (2007). Assessing exposure to airborne nanomaterials: Current
abilities and future requirements. Nanotoxicology 1: 26-41.
[28]
Worth A (2007). Computational nanotoxicology - towards a structure-activity based paradigm
or investigating the activity of nanoparticles. In Icon Workshop. Towards Predicting Nano-Bio
Interactions , Zurich, Switzerland.
[29]
Nel A and D Grainger (2010). Nanotechnology environmental, health and safety issues. In
Nanotechnology Long-term Impacts and Research Directions: 2000-2020 , National Science
Foundation, Arlington, VA, 30 September. WTEC International Study Public Presentation of
the Final Report.
[30]
Dinadayalane TC and J Leszczynski (2007). Towards nanomaterials: structural, energetic and
reactivity aspects of single-walled carbon nanotubes. In Nanomaterials Design and Simulation ,
PB Balbuena and JM Seminario (eds). Elsevier: Amsterdam: 167-199.
[31]
Dinadayalane TC and J Leszczynski (2010). Remarkable diversity of carbon-carbon bonds:
structures and properties of fullerenes, carbon nanotubes, and graphene. Structural Chemistry
21: 1155-1169.
[32]
Dinadayalane TC (2012). Fundamental structural, electronic, and chemical properties of carbon
nanostructures: graphene, fullerenes, carbon nanotubes, and their derivatives. In Handbook of
Computational Chemistry . F Leszczynski and J Leszczynski (ed.). Springer: Amsterdam:
793-867.
[33]
Buseck PR, SJ Tsipursky and R Hettich (1992). Fullerenes from the geological environment.
Science 257: 215-217.
[34]
Cami J, J Bernard-Salas, E Peeters and SE Malek (2010). Detection of C 60 and C 70 in a young
planetary Nebula. Science 329: 1180-1182.
[35]
Kroto HW, JR Heath, SC O'Brien, RF Curl and RE Smalley (1985). C 60 : Buckminsterfullerene.
Nature 318: 162-163.
[36]
Iijima S (1991). Helical microtubules of graphitic carbon. Nature 354: 56-58.
[37]
Novoselov KS, AK Geim, SV Morozov, D Jiang, Y Zhang, SV Dubonos, IV Grigorieva and
AA Firsov (2004). Electric field effect in atomically thin carbon films. Science 306: 666-669.
[38]
Geim AK (2009). Graphene: status and prospects. Science 324: 1530-1534.
[39]
Blank V, M Popov, G Pivovarov, N Lvova, K Gogolinsky, V Reshetov (1998). Ultrahard and
superhard phases of fullerite C 60 : comparison with diamond on hardness and wear. Diamond
and Related Materials 7: 427-431.
[40]
Gharbi N, M Pressac, M Hadchouel, H Szwarc, SR Wilson, F Moussa (2005). Fullerene is a
powerful antioxidant in vivo with no acute or subacutetoxicity. Nano Letters 5: 2578-2585.
[41]
GP Tegos, TN Demidova, D Arcila-Lopez, H Lee, T Wharton, H Gali and MR Hamblin (2005).
Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chemistry and
Biology 12: 1127-1135.
[42]
Yu M-F, O Lourie, MJ Dyer, K Moloni, TF Kelly and RS Ruoff (2000). Strength and breaking
mechanism of multiwalledcarbon nanotubes under tensile load. Science 287: 637-640.
Search WWH ::




Custom Search