Biomedical Engineering Reference
In-Depth Information
[42]
Chaudeurge A, C Wilhelm, A Chen-Tournoux, P Farahmand, V Bellamy, G Autret, C Menager,
A Hagege, J Larghero, F Gazeau, et al . (2011). Can magnetic targeting of magnetically labeled
circulating cells optimize intramyocardial cell retention? Cell Transplantation 21: 679-691.
[43]
Song M, YJ Kim, YH Kim, J Roh, SU Kim and BW Yoon (2010). Using a neodymium magnet
to target delivery of ferumoxide-labeled human neural stem cells in a rat model of focal cerebral
ischemia. Human Gene Therapy 21: 603-610.
[44]
Yanai A, UO Hafeli, AL Metcalfe, P Soema, L Addo, CY Gregory-Evans, K Po, X Shan, OL
Moritz and K Gregory-Evans (2012). Focused magnetic stem cell targeting to the retina using
superparamagnetic iron oxide nanoparticles. Cell Transplantation 21: 1137-1148.
[45]
Carniato F, L Tei, M Cossi, L Marchese and M Botta (2010). A chemical strategy for the relax-
ivity enhancement of Gd(III) chelates anchored on mesoporous silica nanoparticles. Chemistry
16: 10727-10734.
[46]
Modo M, D Cash, K Mellodew, SC Williams, SE Fraser, TJ Meade, J Price and H Hodges
(2002). Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced,
magnetic resonance imaging. Neuroimage 17: 803-811.
[47]
McDonald MA and KL Watkin (2006). Investigations into the physicochemical properties of
dextran small particulate gadolinium oxide nanoparticles. Academic Radiology 13: 421-427.
[48]
Rehor I, V Vilimova, P Jendelova, V Kubicek, D Jirak, V Herynek, M Kapcalova, J Kotek, J
Cerny, P Hermann, et al . (2011). Phosphonate-titanium dioxide assemblies: platform for multi-
modal diagnostic-therapeutic nanoprobes. Journal of Medicinal Chemistry 54: 5185-5194.
[49]
Hou S, S Tong, J Zhou and G Bao (2012). Block copolymer-based gadolinium nanoparticles as
MRI contrast agents with high T(1) relaxivity. Nanomedicine (London) 7: 211-218.
[50]
Hedlund A, M Ahren, H Gustafsson, N Abrikossova, M Warntjes, JI Jonsson, K Uvdal and M
Engstrom (2011). GdO nanoparticles in hematopoietic cells for MRI contrast enhancement.
International Journal of Nanomedicine 6: 3233-3240.
[51]
Loai Y, N Sakib, R Janik, WD Foltz and HL Margaret Cheng (2011). Human aortic endothelial
cell labeling with positive contrast gadolinium oxide nanoparticles for cellular magnetic reso-
nance imaging at 7 tesla. Molecular Imaging 11: 166-175..
[52]
Guay-Begin AA, P Chevallier, L Faucher, S Turgeon and MA Fortin (2012). Surface modifica-
tion of gadolinium oxide thin films and nanoparticles using poly(ethylene glycol)-phosphate.
Langmuir 28: 774-782.
[53]
Faucher L, AA Guay-Begin, J Lagueux, MF Cote, E Petitclerc and MA Fortin (2011). Ultra-
small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast
Media Molecular Imaging 6: 209-218.
[54]
Bhakta G, RK Sharma, N Gupta, S Cool, V Nurcombe and A Maitra (2011). Multifunctional
silica nanoparticles with potentials of imaging and gene delivery. Nanomedicine 7: 472-479.
[55]
McDonald MA and KL Watkin (2003). Small particulate gadolinium oxide and gadolinium
oxide albumin microspheres as multimodal contrast and therapeutic agents. Investigative
Radiology 38: 305-310.
[56]
Tran LA, R Krishnamurthy, R Muthupillai, G Cabreira-Hansen Mda, JT Willerson, EC Perin
and LJ Wilson (2010). Gadonanotubes as magnetic nanolabels for stem cell detection.
Biomaterials 31: 9482-9491.
[57]
Anderson SA, KK Lee and JA Frank (2006). Gadolinium-fullerenol as a paramagnetic contrast
agent for cellular imaging. Investigative Radiology 41: 332-338.
[58]
Agudelo CA, Y Tachibana, AF Hurtado, T Ose, H Iida and T Yamaoka (2012). The use of
magnetic resonance cell tracking to monitor endothelial progenitor cells in a rat hindlimb
ischemic model. Biomaterials 33: 2439-2448.
[59]
Koenig SH, C Baglin, RD Brown, 3rd and CF Brewer (1984). Magnetic field dependence of
solvent proton relaxation induced by Gd3+ and Mn2+ complexes. Magnetic Resonance in
Medicine 1: 496-501.
[60]
Racette BA, M Aschner, TR Guilarte, U Dydak, SR Criswell and W Zheng (2011).
Pathophysiology of manganese-associated neurotoxicity. Neurotoxicology 33: 881-886.
[61]
Eriksson H, J Tedroff, KA Thuomas, SM Aquilonius, P Hartvig, KJ Fasth, P Bjurling, B
Langstrom, KG Hedstrom and E Heilbronn (1992). Manganese induced brain lesions in Macaca
Search WWH ::




Custom Search