Environmental Engineering Reference
In-Depth Information
[100] Li Q, Mahendra s, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ. Antimicrobial nanomaterials for water disinfection and microbial
control: Potential applications and implications. Water Res. 2008;42:4591-4602.
[101] Taylor E, Webster TJ. Reducing infections through nanotechnology and nanoparticles. Int. J. Nanomedicine 2011;6:1463-1473.
[102] Koper O, Klabunde J, Marchin G, Klabunde KJ, stoimenov P, Bohra L. Nanoscale Powders and formulations with Biocidal Activity
Toward spores and Vegetative Cells of Bacillus species, Viruses, and Toxins. Curr. Microbiol. 2002;44:49-55.
[103] Ravishankar RV, Jamuna BA. Nanoparticles and their potential application as antimicrobials. In: Mendez-Vilas A, editor. Science
against microbial pathogens: communicating current research and technological advances . Extremadura, spain: formatex Research
Center; 2011. p 197-209.
[104] Gokulakrishnam R, Ravikumar s, Raj JA. In vitro antibacterial potential of metal oxide nanoparticles against antibiotic resistant bac-
terial pathogens. Asian Pac. J. Trop. Med. 2012;2:411-413.
[105] sadiq M, Chowdhury B, Chandrasekaran N, Mukherjee A. Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles.
Nanomed. Nanotechnol. 2009;5:282-286.
[106] Mukherjee A, Mohammed sI, Prathna TC, Chandrasekaran N. Antimicrobial activity of aluminum oxide nanoparticles for potential
clinical applications. In: Mendez-Vilas A, editor. Science against microbial pathogens: communicating current research and techno-
logical advances . Extremadura, spain: formatex Research Center; 2011. p 245-251.
[107] Jiang W, Mashayekhi H, xing B. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut.
2009;157:1619-1625.
[108] Balasubramanyam A, sailaja N, Mahboob M, Rahman Mf, Hussain sM, Grover P. In vitro mutagenicity assessment of aluminium
oxide nanomaterials using the Salmonella /microsome assay. Toxicol. in Vitro 2010;24:1871-1876.
[109] fahmy B, Cormier sA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol. in Vitro
2009;23:1365-1371.
[110] Karlsson HL, Cronholm P, Gustafsson J, Möller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide
nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008;21:1726-1732.
[111] Manusadzianas L, Caillet C, fachetti L, Gylyte B, Grigutyte R, Jurkoniene s, Kartonas R, sadauskas K, Thomas f, Vitkus R, férard
J-f. Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environ. Toxicol. Chem. 2012;31:108-114.
[112] Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP. Characterization of copper oxide nanoparticles for antimicrobial
applications. Int. J. Antimicrob. Ag. 2009;33:587-590.
[113] Rupareli JP, Chatterjee AK, Duttagupta sP, Mukherji s. strain specificity in antimicrobial activity of silver and copper nanoparticles.
Acta Biomater 2008;4:707-771.
[114] Hrenovic J, Milenkovic J, Daneu N, Kepcija RM, Rajic N. Antimicrobial activity of metal oxide nanoparticles supported onto natural
clinoptilolite. Chemosphere 2012;88:1103-1107.
[115] franklin NM, Rogers NJ, Apte sC, Batley GE, Gadd GE, Casey Ps. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and
ZnCl 2 to a freshwater microalga ( Pseudokirchneriella subcapitata ): the importance of particle solubility. Environ. sci. Technolo.
2007;41:8484-8490.
[116] Gordon T, Perlstein B, Houbara O, felner I, Banin E, Margel s. synthesis and characterization of zinc/iron oxide composite nanopar-
ticles and their antibacterial properties. Colloid. surface A 2011;1/8:374-379.
[117] Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7.
J. Appl. Microbiol. 2009;107:1193-1201.
[118] Jin T, sun D, su Y, Zhang H, sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes , Salmonella
enteritidis and Escherichia coli O157:H7. J. food. sci. 2009;74:46-52.
[119] Brayner R, ferrari-Iliou R, Brivois N, Djediat s, Benedetti Mf, fievet f. Toxicological impact studies based on Escherichia coli
bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters 2006;6:866-870.
[120] Huang Z, Zheng x, Yan D, Yin G, Liao x, Kang Y, Yao Y, Huang D, Hao B. Toxicological effect of ZnO nanoparticles based on
bacteria. Langmuir 2008;24:4140-4144.
[121] sharma D, Rajput J, Kaith Bs, Kaur M, sharma s. synthesis of ZnO nanoparticles and study of their antibacterial and antifungal prop-
erties. Thin solid films 2010;519:1224-1229.
[122] Nair MG, Nirmala M, Rekha K, Anukaliani A. structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO
nanoparticles. Mater. Lett. 2011;65:1797-1800.
[123] Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms.
fEMs Microbiol. Lett. 2008;279:71-76.
[124] Thill A, Zeyons O, spalla O, Chauvat f, Rose J, Auffan M, flank AM. Cytotoxicity of CeO 2 nanoparticles for Escherichia coli :
Physico-chemical insight of the toxicity mechanism. Environ. sci. Technol. 2006;40:6151-6156.
Search WWH ::




Custom Search