Environmental Engineering Reference
In-Depth Information
[24] (a) Thompson Nl. Fluorescence correlation spectroscopy. In: lakowicz JR, editor. Topics in Fluorescence Spectroscopy, Techniques .
Volume 1, New York: Plenum Press; 1991. p 337-378.
(b) Fatin-Rouge N, Buffle J. Study of Environmental Systems by Means of Fluorescence Correlation Spectroscopy . Volume 10,
Chichester: John Wiley and Sons, ltd; 2007.
(c) Starchev K, Wilkinson KJ, Buffle J. Application of Fluorescence Correlation Spectroscopy to the Study of Environmental Systems
In Fluorescence Correlation Spectroscopy: Theory and Applications . Heidelberg: Springer; 2000.
[25] Starchev K, Zhang J, Buffle J. Applications of fluorescence correlation spectroscopy—particle size effect. Journal of Colloid and
Interface Science 1998;203:189-196.
[26] Gallego-Urrea JA, Tuoriniemi J, Hassellov M. Applications of particle-tracking analysis to the determination of size distributions and
concentrations of nanoparticles in environmental biological and food samples. Trends in Analytical Chemistry 2011;30:473-483.
[27] (a) Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF. Determining transport efficiency for the purpose of counting
and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Analytical Chemistry 2011;83:9361-9369.
(b) Mitrano DM, lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF. Detecting nanoparticulate silver using single-particle
inductively coupled plasma-mass spectrometry. Environmental Toxicology and Chemistry 2012;31:115-121.
[28] Hassellov M, van der Kammer F, Beckett R. Characterization of aquatic colloids and macromolecules by field-flow fractionation. In:
Wilkinson KJ, lead JR, editors. Environmental Colloids and Particles: Behaviour, Structure and Characterisation . Volume 10,
Chichester: John Wiley and Sons, ltd; 2007. p 223.
[29] (a) Tiede K, Boxall ABA, Tiede D, Tear SP, David H, lewis J. A robust size-characterization methodology for studying nanoparticle
behaviour in “real” environmental samples, using hydrodynamic chromatography coupled to ICP-MS. Journal of Analytical Atomic
Spectrometry 2009;24:964-972.
(b) Tiede K, Boxall ABA, Wang X, Gore D, Tiede D, Baxter M, David H, Tear SP, lewis J. Application of hydrodynamic chromatography-
ICP-MS to investigate the fate of silver nanoparticles in activated sludge. Journal of Analytical Atomic Spectrometry 2010;25:1149-1154.
[30] Handy RD, van der Kammer F, lead JR, Hassellov M, Owen R, Crane M. The ecotoxicology and chemistry of manufactures nanoparticles.
Ecotoxicology 2008;17:287-314.
[31] van leeuwen HP. Revisited the conception of lability of metal complexes. Electroanalysis 2001;13:826-830.
[32] van leeuwen HP, Cleven R, Buffle J. Voltammetric techniques for complexation measurements in natural aquatic media. Pure and
Applied Chemistry 1989;61:255-274.
[33] (a) Morel FMM, Hering JG. Principles and Applications of Aquatic Chemistry . Chichester: John Wiley & Sons, ltd; 1993.
(b) Campbell PGC. Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A,
Turner DR, editors. Metal Speciation and Bioavailability in Aquatic Systems . Volume 3, Chichester: John Wiley & Sons, ltd; 1995.
p 45-102.
[34] (a) Playle RC. Modeling metal interaction at fish gills. Science of the Total Environment 1998;219:147-163.
(b) Hassler CS, Slaveykova VI, Wilkinson KJ. Some fundamental (and often overlooked) considerations underlying the free ion activity
and biotic ligand models. Environmental Toxicology and Chemistry 2004;23:283-291.
[35] Slaveykova VI, Wilkinson KJ. Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model.
Environmental Chemistry 2005;2:9-24.
[36] Mota AM, Pinheiro JP, Gonçalves MlS. Electrochemical methods for speciation of trace elements in marine waters. dynamic aspects.
Journal of Physical Chemistry A 2012;116:6433-6442.
[37] Davies JT, Rideal EK. Interfacial Phenomena . london: Academic Press; 1963.
[38] (a) Plette ACC, van Riemsdijk WH, Benedetti MF, van der Wal A. pH dependent charging behavior of isolated cell walls of a gram-positive
soil bacterium. Journal of Colloid and Interface Science 1995;173:354-363.
(b) Yee N, Fowle DA, Ferris FG. A Donnan potential model for metal sorption onto Bacillus subtilis. Geochimica et Cosmochimica
Acta 2004;68:3657-3664.
[39] (a) Schiewer S, Volesky B. Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. Environmental
Science and Technology 1997;31:2478-2485.
(b) Rey-Castro C, lodeiro P, Herrero R, de Vicente MES. Acid-base properties of brown seaweed biomass considered as a Donnan gel.
A model reflecting electrostatic effects and chemical heterogeneity. Environmental Science and Technology 2003;37:5159-5167.
[40] Tipping E. WHAMC—a chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete-site/
electrostatic model of ion-binding by humic substances. Computers and Geosciences 1994;20:973-1023.
[41] Koopal lK, Saito T, Pinheiro JP, van Riemsdijk WH. Ion binding to natural organic matter: general considerations and the nica-donnan
model. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005;265:40-54.
[42] Davis TA, Yezek lP, Pinheiro JP, van leeuwen HP. Measurement of Donnan potentials in gels by in-situ microelectrode. Journal of
Electroanalytical Chemistry 2005;584:100-109.
[43] Davis TA, Kalis EJJ, Pinheiro JP, Town RM, van leeuwen HP. Cd(II) speciation in alginate gels. Environmental Science and Technology
2008;42:7242-7247.
Search WWH ::




Custom Search