Environmental Engineering Reference
In-Depth Information
[30] Fahmy B, cormier AS. copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology in
Vitro 2009;23:1365-1371.
[31] cui W, li J, Zhang y, Rong H, lu W, Jiang l. Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and
cell growth. Nanomedicine 2012;8:46-53.
[32] Jenkins JT, Halaney Dl, Soklov kV, ma ll, Shipley HJ, mahajan S, louden cl, Asmis R, milner TE, Johnston kp, Feldman mD.
Excretion and toxicity of gold-iron nanoparticles. Nanomedicine 2013;9:356-365.
[33] ma H, Williams pl, Stephen A. Diamond ecotoxicity of manufactured Zno nanoparticles—a review. Environmental pollution
2013;172:76-85.
[34] Hackenberg S, Friehs g, Froelich k, ginzkey c, koehler c, Scherzed A, Burghartz m, Hagen R, kleinasser N. intracellular distribution,
geno- and cytotoxic effects of nanosized titanium dioxide particles in the anatase crystal phase on human nasal mucosa cells. Toxicology
letters 2010;195:9-14.
[35] Studer mA, limbach lk, Duc lV, krumeich F, Athanassiou Ek, gerber lc, moch H, Stark WJ. Nanoparticle cytotoxicity depends on
intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicology letters 2010;197:
169-174.
[36] Stern ST, mcNeil SE. Nanotechnology safety concerns revisited. Toxicological Sciences 2008;101:4-21.
[37] Nakajima H, ozaki k, Hongyo T, Narama i, Todo T. A rapid and easy method for the qualitative detection of intracellular deposition of
inhaled nanoparticles. Nanomedicine 2011;7:881-888.
[38] liu y, gao y, Zhang l, Wang T, Wang J, Jiao F, li W, li y, li B, chai Z, Wu g, chen c. potential health impact on mice after nasal
instillation of nano-sized copper particles and their translocation in mice. Journal of Nanoscience and Nanotechnology 2009;9:
6335-6343.
[39] crosera m, Bovenzi m, maina g, Adami g, Zanette c, Florio c, larese FF. Nanoparticle dermal absorption and toxicity: a review of
literature. international Archives of occupational and Environmental Health 2009;82:1043-1055.
[40] kim S, lim yT, Soltesz Eg, De grand Am, lee J, Nakayama A, parker JA, mihaljevic T, laurence Rg, Dor Dm, cohn lH, Bawendi
mg, Frangioni JV. Near-infrared fluorescent type ii quantum dots for sentinel lymph node mapping. Nature Biotechnology
2004;22:93-97.
[41] powell JJ, Faria N, Thomas-mckay E, pele lc. origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract.
Journal of Autoimmunity 2010;34:226-233.
[42] Nel AE, madler l, Velegol D, xia T, Hoek Em, Somasundaran p, klaessig F, castranova V, Thompson m. understanding biophysico-
chemical interactions at the nano-bio interface. Nature materials 2009;8:543-557.
[43] Elsaesser A, Howard cV. Toxicology of nanoparticles. Advanced Drug Delivery Reviews 2012;64:129-137.
[44] Vasir Jk, labhasetwar V. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular traf-
ficking of nanoparticles. Biomaterials 2008;29:4244-4252.
[45] Jin y, kannan S, Wu m, Zhao Jx. Toxicity of luminescent silica nanoparticles to living cells. chemical Research in Toxicology
2007;20:1126-1133.
[46] Wagner Sc, Roskamp m, pallerla m, Araghi RR, Schlecht S, koksch B. Nanoparticle-induced folding and fibril formation of coiled-
coil-based model peptides. Small 2010;6:1321-1328.
[47] pereira R, Rocha-Santos TAp, Antunes FE, Rasteiro mg, Ribeiro R, goncalves F, Soares AmVm, lopes i. Screening evaluation of the
ecotoxicity and genotoxicity of soils contaminated with organic and inorganic nanoparticles: the role of ageing. Journal of Hazardous
materials 2011;194:345-354.
[48] Bhabra g, Sood A, Fisher B, cartwright l, Saunders m, Evans WH, Surprenant A, lopez-castejon g, mann S, Davis SA, Hails lA,
ingham E, Verkade p, lane J, Heesom k, Newson R, case cp. Nanoparticles can cause DNA damage across a cellular barrier. Nature
Nanotechnology 2009;4:876-883.
[49] chen m, von mikecz A. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to Sio2 nanoparticles.
Experimental cell Research 2005;305:51-62.
[50] liu l, Takenaka T, Zinchenko AA, chen N, inagaki S, Asada H. cationic silica nanoparticles are efficiently transferred into mammalian
cells. international Symposium on micro-Nanomechatronics and Human Science 2007;1-2:281-285.
[51] Jaganathan H, godin B. Biocompatibility assessment of Si-based nano- and micro-particles. Advanced Drug Delivery Reviews 2012;
64:1800-1819.
[52] Singh N, manshain B, Jenkins gJS, griffith mS, Williams pW, maffeis Tgg, Wright cJ, Doak SH. Nanogenotoxicology: the DNA
damaging potential of engineered nanomaterials. Biomaterials 2009;30:3891-3914.
[53] Wang S, yu H, Wickliffe Jk. limitation of the mTT and xTT assays for measuring cell viability due to superoxide formation induced
by nano-scale Tio2. Toxicology in Vitro 2011;25:2147-2151.
[54] Fent k, Weisbord cJ, Wirth-Heller A, pieles u. Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio
reria) early life stages. Aquatic Toxicology 2010;100:218-228.
Search WWH ::




Custom Search