Environmental Engineering Reference
In-Depth Information
[32] Ruparelia JP, Chatterjee AK, duttagupta SP. Strain specificity in a antimicrobial activity of silver and copper nanoparticles. Acta
Biomater 2008;4:707-716.
[33] Qi L, xu Z, Jiang x, Hu C, Zou x. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 2004;339:
2693-2700.
[34] Kim yS, Seo JH, Cha HJ. Enhancement of heterologous protein expression in Escherichia coli by co-expression of nonspecific dNA
binding stress protein. dps. Enzyme Microb Technol 2003;33:460-465.
[35] Stein dC, Kopec LK, yasbin RE, young FE. Characterization of Bacillus subtilis dSM704 and its production of 1-deoxynojirimycin.
Appl Environ Microbiol 1984;48:280-284.
[36] gorby yA, yanina S, McLean JS, Rosso KM, Moyles d, dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley dE, Reed
SB, Romine MF, Saffarini dA, Hill EA, Shi L, Elias dA, Kennedy dW, Pinchuk g, Watanabe K, Ishii SI, Logan B, Nealson KH,
Fredrickson JK. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.
Proc Natl Acad Sci USA 2006;103:11358-11363.
[37] dumas EM, Ozenne v, Mielke RE, Nadeau JL. Toxicity of CdTe quantum dots in bacterial strains. IEEE Trans Nanobiosci
2009;8:58-64.
[38] Lyon dy, Brunet L, Hinkal gW, Wiesner MR, Alvarez PJJ. Antibacterial activity of fullerene water suspensions (nC(60)) is not due to
ROS-mediated damage. Nano Lett 2008;8:1539-1543.
[39] Brown Sd, Thompson MR, verBerkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, Thompson dK. Molecular dynamics of the
Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 2006;5:1054-1071.
[40] Pelletier dA, Suresh AK, Holton gA, McKeown CK, Wang W, gu B, Mortensen NP, Allison dP, Joy dC, Allison MR, Brown Sd,
Phelps TJ, doktycz MJ. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol
2010;6:7981-7989.
[41] Rodea-Palomares I, gonzalez-garcia C, Leganes F, Fernandez-Piñas F. Effect of pH, EdTA, and anions on heavy metal toxicity toward
a bioluminescent cyanobacterial bioreporter. Arch Environ Contam Toxicol 2009;57:477-487.
[42] valant J, Iavicoli I, drovne d. The importance of a validated standard methodology to define in vitro toxicity of nano-TiO2. Protoplasma
2012;249:493-502.
[43] dusinka M, Runden-Pran E, Carreira SC, Saunders M. Critical evaluation of toxicity tests. In: Fadeel B, Pietroiusti A, Shvedova AA,
editors. Adverse Effects of Engineered Nanomaterials. Exposure, Toxicology, and Impact on Human Health. New york, Ny: Academic
Press; 2012. p 63-83.
[44] Lewinski N, Colvin N, drezer v. Cytotoxicity of nanoparticles. Small 2008;4:26-49.
[45] goodman CM, McCusker Cd, yilmaz T, Rotello v. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains.
Bioconj Chem 2004;15:897-900.
[46] Hussain SM, Hess KL, gearhart JM, geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol vitro
2005;19:975-983.
[47] Shukla RK, Sharma v, Pandey AK, Singh S, Sultana S, dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanopar-
ticles in human epidermal cells. Toxicol vitro 2011;25:231-241.
[48] Herzog E, Casey A, Lyng FM, Chambers g, Byrne HJ, davoren M. A new approach to the toxicity testing of carbon-based nanomaterials—
the clonogenic assay. Toxicol Lett 2007;174:49-60.
[49] Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol vitro
2009;23:1365-1371.
[50] Stern SE, Zolnik BS. 2010. NCL Method gTA-7. Hepatocyte primary ROS assay. Nanotechnology Characterization Laboratory.
Available at http://ncl.cancer.gov/NCL_Method_gTA-7.pdf . Accessed March 13, 2013.
[51] Stern SE, Potter T. 2010. NCL Method gTA-2. Hep-g2 Hepatocarcinoma Cytotoxicity Assay. Nanotechnology Characterization
Laboratory. Available at http://ncl.cancer.gov/NCL_method_gTA-2.pdf . Accessed March 13, 2013.
[52] Stern SE, Potter T. 2010. NCL Method gTA-1. LLC-PK1 Kidney Cytotoxicity Assay. Nanotechnology Characterization Laboratory.
Available at http://ncl.cancer.gov/NCL_Method_gTA-1.pdf . Accessed March 13, 2013.
[53] Lanone S, Rogerieux F, geys J, dupont A, Maillot-Marechal E, Boczkowski J, Lacroix, g, Hoet P. Comparative toxicity of 24 manu-
factured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol. 2009;6:4. Available at http://www.
particleandfibretoxicology.com/content/6/1/14. Accessed March 19, 2013.
[54] Stern SE, Potter T, Neun BW. 2010. NCL Method gTA-3. Hep-g2 Hepatocyte glutathione Assay. Nanotechnology Characterization
Laboratory. Available at http://ncl.cancer.gov/NCL_Method_gTA-3.pdf . Accessed March 13, 2013.
[55] Berry CC, Wells S, Charles S, Curtis ASg. Cell response to dextran-derivatized iron oxide nanoparticles post-internalization. Biomaterials
2003;24:4551-5413.
[56] Stern SE, Potter T. 2010. NCL Method gTA-5. LLC-PK1 Kidney Cell Apoptosis Assay. Nanotechnology Characterization Laboratory.
Available at http://ncl.cancer.gov/ncl_method_gta-5.pdf. Accessed March 13, 2013.
Search WWH ::




Custom Search