Environmental Engineering Reference
In-Depth Information
[61] Wang S, yu D, Dai l. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocata-lysts for oxygen reduction.
J Am Chem Soc 2011;133:5182-5185.
[62] Figueiredo Jl, Pereira mFr, Serp P, Kalck P, Samant PV, Fernandes JB. Development of carbon nanotube and carbon xerogel supported
catalysts for the electro-oxidation of methanol in fuel cells. Carbon 2006;44:2516-2522.
[63] li l, Xing y. Pt-ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts. J Phys Chem C 2007;111:
2803-2808.
[64] Andersen Sm, Borghei m, lund P, Elina y-r, Pasanen A, Kauppinen E, ruiz V, Kauranen P, Skou Em. Durability of Carbon Nanofiber
(CNF) & Carbon Nanotube (CNT) as catalyst support for proton exchange membrane fuel cells. Solid State ion 2013;231:94-101.
[65] Karousis N, Tagmatarchis N, Tasis D. Current progress on the chemical modification of carbon nanotubes. Chem rev
2010;110:5366-5397.
[66] Shimizu K, Wang JS, Wai Cm. Application of green chemistry techniques to prepare electrocatalysts for direct methanol fuel cells.
J Phys Chem A 2010;114:3956-3961.
[67] Qian J, Wei W, huang h, Tao y, Chen K, Tang X. A study of different polyphosphazene-coated carbon nanotubes as a Pt-Co catalyst
support for methanol oxidation fuel cell. J Power Sourc 2012;210:345-349.
[68] Antolini E. Graphene as a new carbon support for low-temperaturefuel cell catalysts. Appl Catal Environ 2012;123-124:52-68.
[69] hu y, Wu P, yin y, Zhang h, Cai C. Effects of structure, composition, and carbon support properties on the electrocatalytic activity of
Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl Catal B: Environ 2012;111-112:208-217.
[70] he D, Jiang y, lv h, Pan m, mu S. Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced
activity and stability. Appl Catal Environ 2013;132-133:379-388.
[71] Debe mK, Poirier rJ. Postdeposition growth of a uniquely nanostructured organic film by vacuum annealing. J Vac Sci Technol
1994;A12:2017-2022.
[72] Gancs l, Kobayashi T, Debe mK, Atanasoski r, Wieckowski A. Crystallographic characteristics of nanostructured thin film fuel
cellelectrocatalysts—a hrTEm study. Chem mater 2008;20:2444-2454.
[73] mauritz KA, moore rB. State of understanding of Nafion. Chem rev 2004;104:4535-4586.
[74] Thiam hS, Daud WrW, Kamarudin SK, mohammad AB, Kadhum AAh, loh KS, majlan Eh. Overview on nanostructured membrane
in fuel cell applications. int J hydrogen Energy 2011;36:3187-3205.
[75] licoccia S, Traversa E. increasing the operation temperature of polymer electrolyte membranes for fuel cells: from nanocomposites to
hybrids. J Power Sources 2006;159:12-20.
[76] Seol J-h, Won J-h, yoon K-S, hong yT, lee S-y. SiO 2 ceramic nanoporous substrate-reinforced sulfonated poly(arylene ether sulfone)
composite membranes for proton exchange membrane fuel cells. int J hydrogen Energy 2012;37:6189-6198.
[77] Zarrin h, higgins D, Jun y, Chen Z, Fowler m. Functionalized graphene oxide nanocomposite membrane for low humidity and high
temperature proton exchange membrane fuel cells. J Phys Chem C 2011;115:20774-20781.
[78] Tripathi BP, Schieda m, Shahi VK, Nunes SP. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon
nanotubes. J Power Sources 2011;196:911-919.
[79] Waheed A, Forsyth D, Watts A, Saad AF, mitchell Gr, Farmer m, harris PJF. The track nanotechnology. radiat meas
2009;44:1109-1113.
[80] Chakarvarti SK. Track-etch membranes enabled nano-/microtechnology: a review. radiat meas 2009;44:1085-1092.
[81] Clochard m-C, Berthelot T, Baudin C, Betz N, Balanzat E, GĂ©bel G, morind A. J Power Sourc 2010;195:223-231.
[82] yoshida m, Kimura y, Chen J, Asano m, maekawa y. Preparation of PTFE-based fuel cell membranes by combining latent track
formation technology with graft polymerization. radiat Phys Chem 2009;78:1060-1066.
[83] mcWhorter S, read C, Ordaz G, Stetson N. materials-based hydrogenstorage: attributes for near-term, early market PEm fuel cells.
Curr Opin Solid State mater Sci 2011;15:29-38.
[84] mao SS, Shen S, Guo l. Nanomaterials for renewable hydrogen production, storage and utilization. Progr Nat Sci mater int
2012;22:522-534.
[85] Zheng J, liu X, Xu P, liu P, Zhao y, yang J. Development of high pressure gaseous hydrogen storage technologies. int J hydrogen
Energy 2012;37:1048-1057.
[86] ho Sh, rahman mm. Forced convective mixing in a zero boil-off cryogenic storage tank. int J hydrogen Energy 2012;37:10196-10209.
[87] Conte m, Prosini PP, Passerini S. Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanoma-
terials. mater Sci Eng B 2004;108:2-8.
[88] Pukazhselvan D, Kumar V, Singh SK. high capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy
2012;1:566-589.
[89] Sakintuna B, lamari-Darkrim F, hirscher m. metal hydride materials for solidhydrogen storage: a review. int J hydrogen Energy
2007;32:1121-1140.
Search WWH ::




Custom Search