Environmental Engineering Reference
In-Depth Information
[32] Jang i, hwang i, Tak y. Attenuated degradation of a PEmFC cathode during fuel starvation by using carbon-supported irO 2 . Electrochim
Acta 2013;90:148-156.
[33] Borup r, meyers J, Pivovar B, Kim yS, mukundan r, Garland N, myers D, Wilson m, Garzon F, Wood D, Zelenay P, more K,
Stroh K, Zawodzinski T, Boncella J, mcGrath JE, inaba m, miyatake K, hori m, Ota K, Ogumi Z, miyata S, Nishikata A, Siroma Z.
Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem rev 2007;107:3904-3951.
[34] markert F, Nielsen SK, Paulsen Jl, Andersen V. Safety aspects of future infrastructure scenarios with hydrogen refuelling stations. int
J hydrogen Energy 2007;32:2227-2234.
[35] muradov NZ, Veziroglu TN. From hydrocarbon to hydrogen-carbon to hydrogen economy. int J hydrogen Energy 2005;30:225-237.
[36] Ananthachar V, Duffy JJ. Efficiencies of hydrogen storage systems onboard fuel cell vehicles. Solar Energy 2005;78:687-694.
[37] li C, Peng P, Zhou DW, Wan l. research progress in liBh 4 for hydrogen storage: a review. int J hydrogen Energy 2011;36:14512-14526.
[38] Oriňáková r, Oriňák A. recent applications of carbon nanotubes in hydrogen production and storage. Fuel 2011;90:3123-3140.
[39] Galassi mC, Acosta-iborra B, Baraldi D, Bonato C, harskamp F, Frischauf N, moretto P. Onboard compressed hydrogen storage: fast
filling experiments and simulations. Energy Procedia 2012;29:192-200.
[40] Ahluwalia rK, hua TQ, Peng JK. On-board and Off-board performance of hydrogen storage options for light-duty vehicles. int J
hydrogen Energy 2012;37:2891-2910.
[41] Paster mD, Ahluwalia rK, Berry G, Elgowainy A, lasher S, mcKenney K, Gardiner m. hydrogen storage technology options for fuel
cell vehicles: well-to-wheel costs, energy efficiencies,and greenhouse gas emissions. int J hydrogen Energy 2011;36:14534-14551.
[42] huo h, Wu y, Wang m. Well-to-wheels assessment of criteria pollutantemissions from various vehicle/fuel systems. Atmos Environ
2009;43:1796-1804.
[43] Jaramillo P, Samaras C, Wakeley h, meisterling K. Greenhouse gas implications ofusing coal for transportation: life cycle assessment
of coal-to-liquids, plug-in hybrids,and hydrogen pathways. Energy Policy 2009;37:2689-2695.
[44] Zhong C-J, luo J, Fang B, Wanjala BN, Njoki PN, loukrakpam r, yin J. Nanostructured catalysts in fuel cells. Nanotechnology
2010;21:062001.
[45] mott D, luo J, Njoki PN, lin y, Wang l, Zhong C-J. Synergistic activity of gold-platinum alloy nanoparticle catalysts. Catal Today
2007;122:378-385.
[46] luo J, Njoki PN, lin y, Wang l, Zhong C-J. Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic
reduction of oxygen. Electrochem Comm 2006;8:581-587.
[47] yao S, Feng l, Zhao X, liu C, Xing W. Pt/C catalysts with narrow size distribution prepared by colloidal-precipitation method for meth-
anol electrooxidation. J Power Sourc 2012;217:280-286.
[48] Chen l, Guo m, Zhang h-F, Wang X-D. Characterization and electrocatalytic properties of Ptru/C catalysts prepared by impregnation-
reduction method using Nd_2O_3 as dispersing reagent. Electrochim Acta 2006;52:1191-1198.
[49] Kim h, moon Sh. Chemical vapor deposition of highly dispersed Pt nanoparticles on multi-walled carbon nanotubes for use as fuel-
cell electrodes. Carbon 2011;49:1491-1501.
[50] Cheney BA, lauterbach JA, Chen JG. reverse micelle synthesis and characterization of supported Pt/Ni bimetallic catalysts on gamma-
Al2O3. Appl Catal Gen 2011;394:41-47.
[51] Paoletti C, Cemmi A, Giorgi l, Giorgi r, Pilloni l, Serra E, Pasquali m. Electro-deposition on carbon black and carbon nanotubes of
Pt nanostructured catalysts for methanol oxidation. J Power Sourc 2008;183:84-91.
[52] Woo S, Kim i, lee JK, Bong S, lee J, Kim h. Preparation of cost-effective Pt-Co electrodes by pulse electrodeposition for PEmFC
electrocatalysts. Electrochim Acta 2011;56:3036-3041.
[53] Gruber D, Ponath N, müller J, lindstaedt F. Sputter-deposited ultra-low catalyst loading for PEm fuel cells. J Power Sourc
2005;150:67-72.
[54] Alvisi m, Galtieri G, Giorgi l, Giorgi r, Serra E, Signore mA. Sputter deposition of Pt nanoclusters and thin films on PEm fuel cell
electrodes. Surf Coat Technol 2005;200:1325-1329.
[55] Tritsaris GA, Nørskov JK, rossmeisl J. Trends in oxygen reduction and methanol activation on transition metal chalcogenides.
Electrochim Acta 2011;56:9783-9788.
[56] Stottlemyer Al, Kelly TG, meng Q, Chen JG. reactions of oxygen-containing molecules on transition metal carbides: surface science
insight into potential applications in catalysis and electrocatalysis. Surf Sci rep 2012;67:201-232.
[57] Di Noto V, Negro E, Polizzi S, riello P, Atanassov P. Preparation, characterization and single-cell performance of a new class of Pd-
carbon nitride electrocatalysts for oxygen reduction reaction in PEmFCs. Appl Catal Environ 2012;111-112:185-199.
[58] Zagal Jh, Griveau S, Silva JF, Nyokong T, Bedioui F. metallophthalocy-anine-based molecular materials as catalysts for electrochemical
reac-tions. Coord Chem rev 2010;254:2755-2791.
[59] Othman r, Dicks Al, Zhu Z. Non precious metal catalysts for the PEm fuel cell cathode. int J hydrogen Energy 2012;37:357-372.
[60] Qu l, liu y, Baek J-B, Dai l. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS
Nano 2010;4:1321-1326.
Search WWH ::




Custom Search